南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (4): 23-32.doi: 10.12302/j.issn.1000-2006.202009021
收稿日期:
2020-09-09
接受日期:
2020-11-02
出版日期:
2021-07-30
发布日期:
2021-07-30
通讯作者:
甄贞
基金资助:
ZHAO Yinghui1,2(), YANG Haicheng1, ZHEN Zhen1,2,*()
Received:
2020-09-09
Accepted:
2020-11-02
Online:
2021-07-30
Published:
2021-07-30
Contact:
ZHEN Zhen
摘要:
【目的】应用不同数据源分析不同林冠层中探测提取树高的异同,探索适用于中国北方天然次生林树高估测的方法。【方法】以东北林业大学帽儿山实验林场中林施业区0.25 hm2样地为研究区域,基于无人机激光雷达(unmanned aerial vehicle laser scanning, ULS)、地基激光雷达(terrestrial laser scanning,TLS)和Vertex IV超声测高仪实测单木树高,根据冠层高度分布(canopy height distribution, CHD)对林冠层进行分层,对不同林冠层(上层和下层)、不同树木类型(针叶树和阔叶树)探测提取的树高进行对比与分析。【结果】由CHD计算得到的冠层分层阈值为8.5 m。树高的离群值大多产生在林冠上层,阔叶树比针叶树更容易产生离群值,ULS比TLS更容易产生离群值。在林冠上层,ULS比TLS估测树高的相对均方根误差(rRMSE)低2.56%,ULS提取针叶树树高的rRMSE比阔叶树低2.68%;在林冠下层,ULS仅能探测到少量树木,ULS比TLS探测提取树高的 rRMSE高6.31%,TLS提取针叶树树高的rRMSE比阔叶树低1.16%。【结论】针叶树的树高估测精度普遍高于阔叶树;当TLS和ULS均能对单木进行完全扫描时,具有准确提取树高的潜力;树高离群值多由冠型不规则或相互交叉的阔叶树产生,而大部分针叶树,由于具有规则的冠型,所以产生的离群值较少;基于CHD对林冠层进行划分能够较好地反映不同数据源估测树高的适用范围,具有一定的推广意义。
中图分类号:
赵颖慧,杨海城,甄贞. 基于ULS、TLS和超声测高仪的天然次生林中不同林冠层树高估测[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 23-32.
ZHAO Yinghui, YANG Haicheng, ZHEN Zhen. Tree height estimations for different forest canopies in natural secondary forests based on ULS, TLS and ultrasonic altimeter systems[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(4): 23-32.DOI: 10.12302/j.issn.1000-2006.202009021.
表1
样地树木统计特征"
树木类型 tree types | 株数 number of trees | 统计特征 statistic feature | 胸径/ cm DBH | 树高/m tree height | 冠幅/m crown width |
---|---|---|---|---|---|
针叶树 coniferous trees | 144 | 最大值 | 25.90 | 15.40 | 5.87 |
最小值 | 5.60 | 5.40 | 1.80 | ||
平均值 | 14.13 | 10.71 | 3.42 | ||
标准差 | 5.14 | 2.48 | 0.96 | ||
阔叶树 broadleaved trees | 215 | 最大值 | 42.01 | 21.30 | 11.19 |
最小值 | 5.00 | 4.90 | 1.25 | ||
平均值 | 11.04 | 10.10 | 4.35 | ||
标准差 | 6.19 | 3.03 | 1.71 | ||
合计 total | 359 | 最大值 | 42.01 | 21.30 | 11.19 |
最小值 | 5.00 | 4.90 | 1.25 | ||
平均值 | 12.28 | 10.70 | 3.98 | ||
标准差 | 5.98 | 3.02 | 1.52 |
表2
3种数据源的离群值统计"
3种数据源 three data sources | 林冠上层 overstory canopy | 林冠下层 understory canopy | ||
---|---|---|---|---|
针叶树 coniferous trees | 阔叶树 broadleaved trees | 针叶树 coniferous trees | 阔叶树 broadleaved trees | |
基于ULS数据的离群值 outliers based on ULS data | 7 | 13 | 4 | 6 |
基于TLS数据的离群值 outliers based on TLS data | 1 | 8 | 1 | 1 |
ULS和TLS离群值交集 intersection of outliers using ULS and TLS | - | 3 | - | - |
表3
基于ULS的估测树高和样地实测树高的比较"
冠层 canopy | 树木类型 tree types | 株数 number of trees | σ(RMSE)/ m | σ(rRMSE)/ % | σ(Bias)/ m | σ(rBias)/ % | R |
---|---|---|---|---|---|---|---|
林冠上层 the overstory canopy | 针叶树 coniferous trees | 96 | 0.41 | 3.44 | -0.07 | -0.57 | 0.97 |
阔叶树 broadleaved trees | 134 | 0.77 | 6.12 | -0.34 | -2.73 | 0.97 | |
合计 total | 230 | 0.64 | 5.19 | -0.22 | -1.78 | 0.97 | |
林冠下层 the understory canopy | 针叶树 coniferous trees | 1 | - | - | - | - | - |
阔叶树 broadleaved trees | 14 | 0.80 | 10.14 | 0.47 | 6.04 | 0.90 | |
合计 total | 15 | 0.80 | 10.14 | 0.47 | 6.04 | 0.90 | |
总计 total | 针叶树 coniferous trees | 97 | 0.41 | 3.44 | -0.07 | -0.57 | 0.97 |
阔叶树 broadleaved trees | 148 | 0.77 | 6.23 | -0.31 | -2.45 | 0.98 | |
合计 total | 245 | 0.63 | 5.34 | -0.20 | -1.66 | 0.97 |
表4
基于TLS估测树高和样地实测树高的比较"
冠层 canopy | 树木类型 tree types | 株数 number of trees | σ(RMSE)/ m | σ(rRMSE)/ % | σ(Bias)/ m | σ(rBias)/ % | R |
---|---|---|---|---|---|---|---|
林冠上层 the overstory canopy | 针叶树 coniferous trees | 101 | 0.67 | 5.71 | -0.37 | -3.23 | 0.96 |
阔叶树 broadleaved trees | 126 | 1.02 | 8.40 | -0.57 | -4.70 | 0.97 | |
合计 total | 227 | 1.02 | 7.75 | -0.85 | -6.50 | 0.95 | |
林冠下层 the understory canopy | 针叶树 coniferous trees | 28 | 0.23 | 3.21 | 0.14 | 2.00 | 0.97 |
阔叶树 broadleaved trees | 25 | 0.33 | 4.37 | 0.16 | 2.22 | 0.93 | |
合计 total | 53 | 0.28 | 3.83 | 0.16 | 2.18 | 0.96 | |
总计 total | 针叶树 coniferous trees | 129 | 0.60 | 5.62 | -0.27 | -2.51 | 0.98 |
阔叶树 broadleaved trees | 151 | 0.95 | 8.30 | -0.47 | -4.07 | 0.98 | |
合计 total | 280 | 0.81 | 7.26 | -0.37 | -3.36 | 0.98 |
表5
基于ULS和TLS估测树高的比较"
冠层 canopy | 树木类型 tree types | 株数 number of trees | σ(RMSE)/m | σ(rRMSE)/% | σ(Bias)/m | σ(rBias)/% | R |
---|---|---|---|---|---|---|---|
林冠上层 the overstory canopy | 针叶树 coniferous trees | 83 | 0.67 | 5.68 | -0.44 | -3.73 | 0.93 |
阔叶树 broadleaved trees | 98 | 0.71 | 5.82 | -0.42 | -3.50 | 0.96 | |
合计 total | 181 | 0.70 | 5.76 | -0.44 | -3.60 | 0.95 | |
林冠下层 the understory canopy | 针叶树 coniferous trees | 1 | - | - | - | - | - |
阔叶树 broadleaved trees | 9 | 0.61 | 7.44 | 0.05 | 0.69 | 0.97 | |
合计 total | 10 | 0.61 | 7.44 | 0.05 | 0.69 | 0.97 | |
总计 total | 针叶树 coniferous trees | 84 | 0.67 | 5.68 | -0.44 | -3.73 | 0.93 |
阔叶树 broadleaved trees | 107 | 0.71 | 5.86 | -0.41 | -3.41 | 0.96 | |
合计 total | 191 | 0.70 | 5.78 | -0.43 | -3.56 | 0.95 |
[1] |
ZHAO D H, KANE M, MARKEWITZ D, et al. Additive tree biomass equations for midrotation loblolly pine plantations[J]. For Sci, 2015, 61(4):613-623. DOI: 10.5849/forsci.14-193.
doi: 10.5849/forsci.14-193 |
[2] |
ZOU W T, ZENG W S, ZHANG L J, et al. Modeling crown biomass for four pine species in China[J]. Forests, 2015, 6(12):433-449. DOI: 10.3390/f6020433.
doi: 10.3390/f6020433 |
[3] |
LARJAVAARA M, MULLER-LANDAU H C, METCALF J. Measuring tree height: a quantitative comparison of two common field methods in a moist tropical forest[J]. Methods Ecol Evol, 2013, 4(9):793-801. DOI: 10.1111/2041-210x.12071.
doi: 10.1111/2041-210x.12071 |
[4] |
ZHEN Z, QUACKENBUSH L J, ZHANG L J. Trends in automatic individual tree crown detection and delineation: evolution of LiDAR data[J]. Remote Sens, 2016, 8(4):333. DOI: 10.3390/rs8040333.
doi: 10.3390/rs8040333 |
[5] |
ANDERSON K, GASTON K J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology[J]. Front Ecol Environ, 2013, 11(3):138-146. DOI: 10.1890/120150.
doi: 10.1890/120150 |
[6] |
LIN Y, HYYPPÄ J, JAAKKOLA A. Mini-UAV-borne LIDAR for fine-scale mapping[J]. IEEE Geosci Remote Sens Lett, 2011, 8(3):426-430. DOI: 10.1109/LGRS.2010.2079913.
doi: 10.1109/LGRS.2010.2079913 |
[7] |
WALLACE L, LUCIEER A, WATSON C, et al. Development of a UAV-LiDAR system with application to forest inventory[J]. Remote Sens, 2012, 4(6):1519-1543. DOI: 10.3390/rs4061519.
doi: 10.3390/rs4061519 |
[8] |
HOPKINSON C, CHASMER L, YOUNG-POW C, et al. Assessing forest metrics with a ground-based scanning lidar[J]. Can J For Res, 2004, 34(3):573-583. DOI: 10.1139/x03-225.
doi: 10.1139/x03-225 |
[9] |
PFEIFER N, WNTERHALDER D. Modelling of tree cross sections from terrestrial laser scanning data with free-form curves[J]. Pro of Isp Wor Las Sca for For and Lan Ass, 2004, 36(8):76-81. DOI: 10.1109/TEST.2004.1387399.
doi: 10.1109/TEST.2004.1387399 |
[10] | 熊妮娜, 王佳. 基于地基激光雷达的活立木材积提取算法[J]. 林业工程学报, 2020, 5(6):143-148. |
XIONG N N, WANG J. Extratction algorithm for stand volume using ground-based laser scanner[J]. J For Eng, 2020, 5(6):143-148. DOI: 10.13360/j.issn.2096-1359.202001035.
doi: 10.13360/j.issn.2096-1359.202001035 |
|
[11] |
BREDE B, LAU A, BARTHOLOMEUS H, et al. Comparing Riegl Ricopter UAV LiDAR derived canopy height and DBH with terrestrial LiDAR[J]. Sensors, 2017, 17(10):2371. DOI: 10.3390/s17102371.
doi: 10.3390/s17102371 |
[12] | 李丹, 庞勇, 岳彩荣, 等. 基于TLS数据的单木胸径和树高提取研究[J]. 北京林业大学学报, 2012, 34:79-86. |
LI D, PANG Y, YUE C R, et al. Extraction of DBH and height of single tree based on TLS data[J]. Journal of Beijing Forestry University, 2012, 34:79-86. DOI: 10.13332/j.1000-1522.2012.04.027.
doi: 10.13332/j.1000-1522.2012.04.027 |
|
[13] |
BEYENE S M, HUSSIN Y A, KLOOSTERMAN H E, et al. Fo-rest inventory and aboveground biomass estimation with terrestrial LiDAR in the tropical forest of Malaysia[J]. Can J Remote Sens, 2020, 46(2):130-145. DOI: 10.1080/07038992.2020.1759036.
doi: 10.1080/07038992.2020.1759036 |
[14] |
GOODWIN N R, COOPS N C, CULVENOR D S. Assessment of forest structure with airborne LiDAR and the effects of platform altitude[J]. Remote Sens Environ, 2006, 103(2):140-152. DOI: 10.1016/j.rse.2006.03.003.
doi: 10.1016/j.rse.2006.03.003 |
[15] |
ANDERSEN H E, REUTEBUCH S E, MCGAUGHEY R J. A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods[J]. Can J Remote Sens, 2006, 32(5):355-366. DOI: 10.5589/m06-030.
doi: 10.5589/m06-030 |
[16] |
SIBONA E, VITALI A, MELONI F, et al. Direct measurement of tree height provides different results on the assessment of LiDAR accuracy[J]. Forests, 2016, 8(1):7. DOI: 10.3390/f8010007.
doi: 10.3390/f8010007 |
[17] |
WANG Y S, PYÖRÄLÄ J, LIANG X L, et al. In situ biomass estimation at tree and plot levels: what did data record and what did algorithms derive from terrestrial and aerial point clouds in boreal forest[J]. Remote Sens Environ, 2019, 232:111309. DOI: 10.1016/j.rse.2019.111309.
doi: 10.1016/j.rse.2019.111309 |
[18] |
WALLACE L, MUSK R, LUCIEER A. An assessment of the repeatability of automatic forest inventory metrics derived from UAV-borne laser scanning data[J]. IEEE Trans Geosci Remote Sens, 2014, 52(11):7160-7169. DOI: 10.1109/TGRS.2014.2308208.
doi: 10.1109/TGRS.2014.2308208 |
[19] |
WANG Y S, LEHTOMÄKI M, LIANG L, et al. Is field-measured tree height as reliable as believed: a comparison study of tree height estimates from field measurement,airborne laser scanning and terrestrial laser scanning in a boreal forest[J]. ISPRS J Photogramm Remote Sens, 2019, 147:132-145. DOI: 10.1016/j.isprsjprs.2018.11.008.
doi: 10.1016/j.isprsjprs.2018.11.008 |
[20] |
VAGLIO LAURIN G, DING J Q, DISNEY M, et al. Tree height in tropical forest as measured by different ground, proximal, and remote sensing instruments, and impacts on above ground biomass estimates[J]. Int J Appl Earth Obs Geoinformation, 2019, 82:101899. DOI: 10.1016/j.jag.2019.101899.
doi: 10.1016/j.jag.2019.101899 |
[21] |
TANABE S I, TODA M J, VINOKUROVA A V. Tree shape, fo-rest structure and diversity of drosophilid community: comparison between boreal and temperate birch forests[J]. Ecol Res, 2001, 16(3):369-385. DOI: 10.1046/j.1440-1703.2001.00402.x.
doi: 10.1046/j.1440-1703.2001.00402.x |
[22] |
MIURA N, JONES S D. Characterizing forest ecological structure using pulse types and heights of airborne laser scanning[J]. Remote Sens Environ, 2010, 114(5):1069-1076. DOI: 10.1016/j.rse.2009.12.017.
doi: 10.1016/j.rse.2009.12.017 |
[23] | 郎春博, 贾鹤鸣, 邢致恺, 等. 基于改进粒子群算法的植物冠层图像分割[J]. 森林工程, 2019, 35(1):47-52. |
LANG C B, JIA H M, XING Z K, et al. Multi threshold segmentation of plant canopy image based on improved particle swarm optimization[J]. Forest Engineering, 2019, 35(1):47-52. | |
[24] | 胡文杰, 崔鸿侠, 王晓荣, 等. 三峡库区马尾松次生林林分结构特征分析[J]. 南京林业大学学报(自然科学版), 2019, 43(3):67-76. |
HU W J, CUI H X, WANG X R, et al. Structure characteristics of Pinus massoniana secondary forest in the Three Reservoir Area[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(3):67-76. DOI: 10.3969/j.issn.1000-2006.201805075.
doi: 10.3969/j.issn.1000-2006.201805075 |
|
[25] | 胡传伟, 孙冰, 庄梅梅, 等. 深圳羊台山近自然风景林树种组成与垂直结构[J]. 南京林业大学学报(自然科学版), 2010, 34(4):112-116. |
HU C W, SUN B, ZHUANG M M, et al. Study on species composition and vertical structure of near-nature scenic forest in Mt.Yangtai, Shenzhen[J]. J Nanjing For Univ (Nat Sci Ed), 2010, 34(4):112-116. DOI: 10.3969/j.issn.1000-2006.2010.04.025.
doi: 10.3969/j.issn.1000-2006.2010.04.025 |
|
[26] |
ZIMBLE D A, EVANS D L, CARLSON G C, et al. Characterizing vertical forest structure using small-footprint airborne LiDAR[J]. Remote Sens Environ, 2003, 87(2/3):171-182. DOI: 10.1016/S0034-4257(03)00139-1.
doi: 10.1016/S0034-4257(03)00139-1 |
[27] | 赵静, 李静, 柳钦火. 森林垂直结构参数遥感反演综述[J]. 遥感学报, 2013, 17(4):697-716. |
ZHAO J, LI J, LIU Q H. Review of forest vertical structure parameter inversion based on remote sensing technology[J]. J Remote Sens, 2013, 17(4):697-716. DOI: 10.11834/jrs.20132183.
doi: 10.11834/jrs.20132183 |
|
[28] |
ZHAO K G, POPESCU S, NELSON R. Lidar remote sensing of forest biomass: a scale-invariant estimation approach using airborne lasers[J]. Remote Sens Environ, 2009, 113(1):182-196. DOI: 10.1016/j.rse.2008.09.009.
doi: 10.1016/j.rse.2008.09.009 |
[29] |
QIN H M, WANG C, XI X H, et al. Simulating the effects of the airborne lidar scanning angle, flying altitude, and pulse density for forest foliage profile retrieval[J]. Appl Sci, 2017, 7(7):712. DOI: 10.3390/app7070712.
doi: 10.3390/app7070712 |
[30] |
LEFSKY M A, COHEN W B, ACKER S A, et al. Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests[J]. Remote Sens Environ, 1999, 70(3):339-361. DOI: 10.1016/S0034-4257(99)00052-8.
doi: 10.1016/S0034-4257(99)00052-8 |
[31] |
MALTAMO M, PACKALÉN P, YU X, et al. Identifying and quantifying structural characteristics of heterogeneous boreal forests using laser scanner data[J]. For Ecol Manag, 2005, 216(1/2/3):41-50. DOI: 10.1016/j.foreco.2005.05.034.
doi: 10.1016/j.foreco.2005.05.034 |
[32] |
ZHAO X Q, GUO Q H, SU Y J, et al. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas[J]. ISPRS J Photogramm Remote Sens, 2016, 117:79-91. DOI: 10.1016/j.isprsjprs.2016.03.016.
doi: 10.1016/j.isprsjprs.2016.03.016 |
[33] |
SCHNABEL R, KLEIN R. Octree-based point-cloud compression[C]// Eur Sym Point-Based Gra, 2006: 111-120. DOI: 10.2312/SPBG/SPBG06/111-120.
doi: 10.2312/SPBG/SPBG06/111-120 |
[34] | 刘浩, 张峥男, 曹林. 机载激光雷达森林垂直结构剖面参数的沿海平原人工林林分特征反演[J]. 遥感学报, 2018, 22(5):872-888. |
LIU H, ZHANG Z N, CAO L. Estimating forest stand characteristics in a coastal plain forest plantation based on vertical structure profile parameters derived from ALS data[J]. J Remote Sens, 2018, 22(5):872-888. DOI: 10.11834/jrs.20187465.
doi: 10.11834/jrs.20187465 |
|
[35] |
LLOYD S. Least squares quantization in PCM[J]. IEEE Trans Inf Theory, 1982, 28(2):129-137. DOI: 10.1109/TIT.1982.1056489.
doi: 10.1109/TIT.1982.1056489 |
[36] |
BAZEZEW M N, HUSSIN Y A, KLOOSTERMAN E H. Integrating airborne LiDAR and terrestrial laser scanner forest parameters for accurate above-ground biomass/carbon estimation in Ayer Hitam tropical forest, Malaysia[J]. Int J Appl Earth Obs Geoinformation, 2018, 73:638-652. DOI: 10.1016/j.jag.2018.07.026.
doi: 10.1016/j.jag.2018.07.026 |
[37] |
LEFSKY M A, COHEN W B, ACKER S A, et al. Lidar remote sensing of forest canopy structure and related biophysical parameters at H. J. Andrews Experimental Forest, Oregon, USA[C]// IGARSS ‘98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No. 98CH36174). July 6-10, 1998, Seattle, WA, USA. IEEE, 1998: 1252-1254. DOI: 10.1109/IGARSS.1998.691367.
doi: 10.1109/IGARSS.1998.691367 |
[38] | 李凤日. 测树学[M]. 4版. 北京: 中国林业出版社, 2019: 64. |
LI F R. Forest mensuration[M].4th ed. Beijing: China Forestry Publishing House, 2019: 64. |
[1] | 高谢雨, 董利虎, 郝元朔. 基于TLS的抚育间伐对长白落叶松干形的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 85-94. |
[2] | 路文燕, 董灵波, 田园, 汪莎杉, 曲宣怡, 魏巍, 刘兆刚. 基于树种组成的大兴安岭天然林主要树种树高-胸径曲线研究[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 157-165. |
[3] | 盖军鹏, 陈东升, 贾炜玮, 王政. 基于种源和气候效应的日本落叶松树高生长模型研究[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 51-60. |
[4] | 王麒淞, 国庆喜. 吉林东部天然次生林下光强衰减的空间分布特征[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 101-108. |
[5] | 王帆, 贾炜玮, 唐依人, 李丹丹. 基于TLS的红松树冠半径提取及其外轮廓模型构建[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 13-22. |
[6] | 高羽, 李静, 刘洋, 乌雅瀚, 巩家星, 辛启睿. 结构方程模型在兴安落叶松林生长中的应用[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 38-46. |
[7] | 董一桥, 刘倩倩, 彭孝楠, 翁泽宇, 刘鑫, 徐海兵, 戴康龙, 董丽娜, 张金池. 人为践踏对南京紫金山天然次生林土壤渗透性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 163-170. |
[8] | 花伟成, 田佳榕, 孙心雨, 徐雁南. 基于TLS数据的杨树削度方程建立及材积估算[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 41-48. |
[9] | 赵颖慧, 郭新龙, 甄贞. 基于光学-ALS变量组合和非参数模型的天然次生林地上生物量估算[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 49-57. |
[10] | 董灵波, 刘兆刚. 森林健康评价及其多尺度转换方法[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 206-216. |
[11] | 陈晨, 刘光武. 黄龙山林区白皮松天然次生林生长规律研究[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 125-130. |
[12] | 姚丹丹, 徐奇刚, 闫晓旺, 李玉堂. 基于贝叶斯方法的蒙古栎林单木树高-胸径模型[J]. 南京林业大学学报(自然科学版), 2020, 44(1): 131-137. |
[13] | 王楚, 顾宸瑞, 姜静, 刘桂丰. 赤霉素对盆栽白桦无性系早期生长及结实的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(5): 16-22. |
[14] | 管惠文,董希斌,张甜,曲杭峰,王智勇,阮加甫. 间伐强度对大兴安岭落叶松天然次生林水文性能的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(06): 68-76. |
[15] | 段光爽,李学东,冯岩,符利勇. 基于广义非线性混合效应的华北落叶松天然次生林枝下高模型[J]. 南京林业大学学报(自然科学版), 2018, 42(02): 170-176. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||