[1] |
FIELD C B, RAUPACH M R, EBRARY I, et al. The global carbon cycle: integrating humans, climate, and the natural world[M]. Chicago: Island Press, 2004.
|
[2] |
汤旭光. 基于激光雷达与多光谱遥感数据的森林地上生物量反演研究[D]. 北京:中国科学院研究生院(东北地理与农业生态研究所), 2013.
|
|
TANG X G. Estimation of forest aboveground biomass by integrating ICESat/GLAS waveform and TM data[D]. Beijing: Graduate School of Chinese Academy of Sciences (Northeast Institute of Geography and Agricultural Ecology), 2013.
|
[3] |
邱赛. ICESat-GLAS波形与HJ-1A高光谱影像联合反演森林地上生物量的研究[D]. 哈尔滨:东北林业大学, 2016.
|
|
QIU S. The research of regional forest above ground biomass inversion combining ICESat-GLAS waveform and HJ-1A hyperspectral imageries[D]. Harbin:Northeast Forestry University, 2016.
|
[4] |
吴文跃, 姚顺彬, 徐志扬. 基于森林资源清查数据的江西省主要森林类型净生产力研究[J]. 南京林业大学学报(自然科学版), 2019, 43(5):193-198.
|
|
WU W Y, YAO S B, XU Z Y, et al. A study on the net productivity of main forest types in Jiangxi Province based on forest resources inventory data[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(5):193-198. DOI: 10.3969/j.issn.1000-2006.201903045.
doi: 10.3969/j.issn.1000-2006.201903045
|
[5] |
MOHOLDT G, NUTH C, HAGEN J O, et al. Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry[J]. Remote Sens Environ, 2010, 114(11):2756-2767.DOI: 10.1016/j.rse.2010.06.008.
doi: 10.1016/j.rse.2010.06.008
|
[6] |
CARABAJAL C C, HARDING D J, SUCHDEO V P, et al. Development of AN ICESat geodetic control database and evaluation of global topographic assets[J]. American Geophysical Union, Fall Meeting, 2010(6):1907-1910. DOI: 10.1038/nmeth.2835.
doi: 10.1038/nmeth.2835
|
[7] |
LEFSKY M A. A global forest canopy height map from the moderate resolution imaging spectroradiometer and the geoscience laser altimeter system[J]. Geophys Res Lett, 2010, 37(15):L15401.DOI: 10.1029/2010GL043622.
doi: 10.1029/2010GL043622
|
[8] |
KHALEFA E, SMIT I P J, NICKLESS A, et al. Retrieval of savanna vegetation canopy height from ICESat-GLAS spaceborne LiDAR with terrain correction[J]. IEEE Geosci Remote Sens Lett, 2013, 10(6):1439-1443.DOI: 10.1109/LGRS.2013.2259793.
doi: 10.1109/LGRS.2013.2259793
|
[9] |
XING Y Q, DE GIER A, ZHANG J J, et al. An improved method for estimating forest canopy height using ICESat-GLAS full waveform data over sloping terrain:a case study in Changbai Mountains,China[J]. Int J Appl Earth Obs Geoinformation, 2010, 12(5):385-392.DOI: 10.1016/j.jag.2010.04.010.
doi: 10.1016/j.jag.2010.04.010
|
[10] |
WANG C, TANG F X, LI L W, et al. Wavelet analysis for ICESat/GLAS waveform decomposition and its application in average tree height estimation[J]. IEEE Geosci Remote Sens Lett, 2013, 10(1):115-119.DOI: 10.1109/LGRS.2012.2194692.
doi: 10.1109/LGRS.2012.2194692
|
[11] |
邱赛, 邢艳秋, 田静, 等. 基于ICESat-GLAS波形数据估测森林郁闭度[J]. 南京林业大学学报(自然科学版), 2016, 40(5):99-106.
|
|
QIU S, XING Y Q, TIAN J, et al. Estimation of forest canopy density based on ICESat-GLAS waveform data[J]. J Nanjing For Univ (Nat Sci Ed), 2016, 40(5):99-106.DOI: 10.3969/j.issn.1000-2006.2016.05.016.
doi: 10.3969/j.issn.1000-2006.2016.05.016
|
[12] |
XI X H, HAN T T, WANG C, et al. Forest above ground biomass inversion by fusing GLAS with optical remote sensing data[J]. ISPRS Int J Geo-Inf, 2016, 5(4):45.DOI: 10.3390/ijgi5040045.
doi: 10.3390/ijgi5040045
|
[13] |
WANG Y, NI W J, SUN G Q, et al. Slope-adaptive waveform metrics of large footprint lidar for estimation of forest aboveground biomass[J]. Remote Sens Environ, 2019, 224:386-400.DOI: 10.1016/j.rse.2019.02.017.
doi: 10.1016/j.rse.2019.02.017
|
[14] |
FATOYINBO T E, SIMARD M. Height and biomass of mangroves in Africa from ICESat/GLAS and SRTM[J]. Int J Remote Sens, 2013, 34(2):668-681.DOI: 10.1080/01431161.2012.712224.
doi: 10.1080/01431161.2012.712224
|
[15] |
RANSON K J, SUN G, KOVACS K, et al. Landcover attributes from ICESat GLAS data in Central Siberia[C]// IGARSS 2004.2004 IEEE International Geoscience and Remote Sensing Symposium.September 20-24,2004,Anchorage,AK,USA.IEEE, 2004:753-756.DOI: 10.1109/IGARSS.2004.1368511.
doi: 10.1109/IGARSS.2004.1368511
|
[16] |
ZHANG J J, DE GIER A, XING Y Q, et al. Full waveform-based analysis for forest type information derivation from large footprint spaceborne lidar data[J]. Photogramm Eng Remote Sensing, 2011, 77(3):281-290.DOI: 10.14358/pers.77.3.281.
doi: 10.14358/pers.77.3.281
|
[17] |
LI L C, XING Y Q. Study on forest type classification based on ICESat-GLAS lidar data[C]// 2011 2nd International Conference on Artificial Intelligence,Management Science and Electronic Commerce (AIMSEC).August 8-10,2011,Deng Feng,China.IEEE, 2011:3379-3382.DOI: 10.1109/AIMSEC.2011.6011388.
doi: 10.1109/AIMSEC.2011.6011388
|
[18] |
刘美爽, 邢艳秋, 李立存, 等. 基于星载激光雷达数据和支持向量分类机方法的森林类型识别[J]. 东北林业大学学报, 2014, 42(2):124-128.
|
|
LIU M S, XING Y Q, LI L C, et al. Forest type identification with spaceborne LIDAR data and C-support vector classification[J]. J Northeast For Univ, 2014, 42(2):124-128.DOI: 10.13759/j.cnki.dlxb.2014.02.030.
doi: 10.13759/j.cnki.dlxb.2014.02.030
|
[19] |
蔡龙涛, 邢艳秋, 黄佳鹏, 等 . 基于 ICESat-GLAS 数据和回波仿真原理识别森林类型[J]. 中南林业科技大学学报, 2021, 41(1):60-68.
|
|
CAI L T, XING Y Q, HUANG J P, et al. Forest types identification based on ICESat-GLAS data and echo simulation principles[J]. J Central South Univ For Technol, 2021, 41(1):60-68.
|
[20] |
WU H B, XING Y Q. Wavelet transform and its application to ICESat-GLAS full waveform data[C]// 2010 International Symposium on Intelligence Information Processing and Trusted Computing.October 28-29,2010,Huanggang,China.IEEE, 2010:373-377.DOI: 10.1109/IPTC.2010.38.
doi: 10.1109/IPTC.2010.38
|
[21] |
邱赛, 邢艳秋, 李立存, 等. 基于小波变换的ICESAT-GlAS波形处理[J]. 森林工程, 2012, 28(5):33-35,59.
|
|
QIU S, XING Y Q, LI L C, et al. ICESAT-GLAS data processing based on wavelet transform[J]. For Eng, 2012, 28(5):33-35,59.DOI: 10.16270/j.cnki.slgc.2012.05.022.
doi: 10.16270/j.cnki.slgc.2012.05.022
|
[22] |
LI D, XU L J, LI X L, et al. Full-waveform LiDAR signal filtering based on Empirical Mode Decomposition method[C]// 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS.July 21-26,2013,Melbourne,VIC,Australia.IEEE, 2013:3399-3402.DOI: 10.1109/IGARSS.2013.6723558.
doi: 10.1109/IGARSS.2013.6723558
|
[23] |
YANG T, WANG C, LI G C, et al. Forest canopy height mapping over China using GLAS and MODIS data[J]. Sci China Earth Sci, 2015, 58(1):96-105.DOI: 10.1007/s11430-014-4905-5.
doi: 10.1007/s11430-014-4905-5
|
[24] |
MAHONEY C, KLJUN N, LOS S, et al. Slope estimation from ICESat/GLAS[J]. Remote Sens, 2014, 6(10):10051-10069.DOI: 10.3390/rs61010051.
doi: 10.3390/rs61010051
|
[25] |
PANG Y, LEFSKY M, SUN G Q, et al. Impact of footprint diameter and off-nadir pointing on the precision of canopy height estimates from spaceborne lidar[J]. Remote Sens Environ, 2011, 115(11):2798-2809.DOI: 10.1016/j.rse.2010.08.025.
doi: 10.1016/j.rse.2010.08.025
|
[26] |
汪泉, 宋文龙, 张怡卓, 等. 基于改进VGG16 网络的机载高光谱针叶树种分类研究[J]. 森林工程, 2021, 37(3):79-87.
|
|
WANG Q, SONG W L, ZHANG Y Z, et al. Study on hyperspectral conifer species classification based on improved VGG16 network[J]. For Eng, 2021, 37(3):79-87.
|
[27] |
DUNCANSON L I, NIEMANN K O, WULDER M A. Estimating forest canopy height and terrain relief from GLAS waveform metrics[J]. Remote Sens Environ, 2010, 114(1):138-154.DOI: 10.1016/j.rse.2009.08.018.
doi: 10.1016/j.rse.2009.08.018
|
[28] |
JIHYUN H A, SEOK S, LEE J S. Robust outlier detection using the instability factor[J]. Knowl-Based Syst, 2014, 63:15-23.DOI: 10.1016/j.knosys.2014.03.001.
doi: 10.1016/j.knosys.2014.03.001
|