南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (2): 49-60.doi: 10.12302/j.issn.1000-2006.202201015
王剑超1,2(), 邱文敏2(), 金康鸣2, 陆铸畴2, 韩小娇2, 卓仁英2, 刘晓光3,*(), 何正权1,*()
收稿日期:
2022-01-12
修回日期:
2022-06-25
出版日期:
2023-03-30
发布日期:
2023-03-28
通讯作者:
* 何正权(基金资助:
WANG Jianchao1,2(), QIU Wenmin2(), JIN Kangming2, LU Zhuchou2, HAN Xiaojiao2, ZHUO Renying2, LIU Xiaoguang3,*(), HE Zhengquan1,*()
Received:
2022-01-12
Revised:
2022-06-25
Online:
2023-03-30
Published:
2023-03-28
摘要:
【目的】WRKY 转录因子在植物响应非生物胁迫过程中发挥着重要的调控作用,目前超积累植物伴矿景天(Sedum plumbizincicola) WRKY转录因子的研究较少。进行SpWRKY基因家族的全基因组鉴定及其在镉胁迫下的表达模式分析可为后续SpWRKYs 基因克隆和耐镉功能分析提供参考。【方法】对伴矿景天WRKY基因家族进行全基因组鉴定和生物信息学分析,利用转录组数据和qRT-PCR 技术检测WRKY基因在镉胁迫下的表达模式并进行转基因拟南芥耐镉性的分析。【结果】伴矿景天基因组中共鉴定出77个SpWRKYs,非均匀地分布在各条染色体上;系统进化树分析发现,伴矿景天WRKY成员被分成3大类群(Ⅰ—Ⅲ),第Ⅱ类群又被分成5个亚群(Ⅱa—e);共线性分析发现,伴矿景天WRKY基因家族和拟南芥(Arabidopsis thaliana) 之间存在7个共线基因对,和玉吊钟(Kalanchoe fedtschenkoi)之间存在53个共线基因对;SpWRKYs基因之间存在 19 个片段复制基因对;启动子序列分析发现,SpWRKYs 启动子有多种与激素和逆境响应等相关的顺式调控元件;镉胁迫表达分析发现,7 个SpWRKYs 受镉胁迫显著上调表达,整体表达趋势呈现先增后减的状态;在拟南芥中过表达SpWRKY69发现,SpWRKY69可以增强Cd离子向地上部的转运速率,对植株镉耐性起到负调控作用。【结论】伴矿景天WRKY基因家族与其他物种的WRKY家族结构相似,片段复制是其主要进化动力之一。镉胁迫条件下部分成员相对表达量显著变化,而SpWRKY69能增加Cd离子向地上部的转运速率,故其他WRKY成员可能也参与调控植株镉耐性。
中图分类号:
王剑超,邱文敏,金康鸣,等. 伴矿景天WRKY基因家族鉴定及镉胁迫响应分析[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 49-60.
WANG Jianchao, QIU Wenmin, JIN Kangming, LU Zhuchou, HAN Xiaojiao, ZHUO Renying, LIU Xiaoguang, HE Zhengquan. Comprehensive analysis of WRKY gene family in Sedum plumbizincicola responding to cadmium stress[J].Journal of Nanjing Forestry University (Natural Science Edition), 2023, 47(2): 49-60.DOI: 10.12302/j.issn.1000-2006.202201015.
表1
引物列表"
基因名 gene ID | 序列 sequence | 用途 application |
---|---|---|
SpWRKY42-RT-F | GTTGCCGCAAATGTTTAGCC | 伴矿景天筛选基因 qRT-PCR引物与 内参引物 |
SpWRKY42-RT-R | ATAGCTGCTGTGAAATGCGG | |
SpWRKY72-RT-F | AGGGTTCTTGTTCGGACTGA | |
SpWRKY72-RT-R | AGCGCTTCTCTGAACCTTCT | |
SpWRKY40-RT-F | AGTGTAGCTGCTGAATCCGA | |
SpWRKY40-RT-R | AAAAGTCCAACTCCGGCCTA | |
SpWRKY46-RT-F | GACAACCGGCACTTTTGACT | |
SpWRKY46-RT-R | TAGGCTGTGTTGGAGTTGGT | |
SpWRKY39-RT-F | AGTTTACCGGCGAAGATGGA | |
SpWRKY39-RT-R | TCCAAATCCGACGACTCTGT | |
SpWRKY69-RT-F | CCAAACCATAAAGCCACCGA | |
SpWRKY69-RT-R | TCGCCGGAACTCTTACAACT | |
SpWRKY29-RT-F | TCACGGCGGAGATATCGAAA | |
SpWRKY29-RT-R | AAGAGCATCGATACGTCCGT | |
UBC9-F | TGGCGTCGAAAAGGATTCTGA | |
UBC9-R | CCTTCGGTGGCTTGAATGGATA | |
SpWRKY69-F | ATGGCCGTCGACCTCGT | SpWRKY69全长基因 克隆引物与拟南芥 内参引物 |
SpWRKY69-R | TCACGACGACTCTAGAATGAGT | |
actin-F | GCACCCTGTTCTTCTTACCG | |
actin-R | AACCCTCGTAGATTGGCACA |
图2
SpWRKY家族的系统发育关系、基序组成与基因结构 A.用MEGA-X构建的ML系统发育树ML phylogenetic tree constructed by MEGA-X;B. 77个SpWRKY蛋白的保守基序。保守基序由MEME预测得来,不同颜色代表不同的基序,编号1—10 the conserved motifs of 77 SpWRKY protein. Conservative motifs are predicted by MEME, and different colors represent different motifs, numbered 1-10;C.77个SpWRKY蛋白的保守结构域与外显子-内含子结构the conserved domain and exon-intron structure of 77 SpWRKY proteins。"
图9
拟南芥中SpWRKY69过表达对Cd转移效率的增强与对Cd耐受性的降低 A:过表达SpWRKY69转基因拟南芥表型。在100 μmol/L CdCl2胁迫下处理3 d,未处理植株作为对照(CK)phenotypic observation of transgenic Arabidopsis thaliana with overexpression of SpWRKY69. Under 100 μmol/L CdCl2 stress for 3 days, the untreated plants were used as control (CK);WT.野生型拟南芥wild type A. thaliana;CK.未经过Cd处理的植株plants without Cd treatment;Sp1与Sp2.过表达SpWRKY69转基因拟南芥高表达植株over-expressed SpWRKY69 transgenic Arabidopsis plants。B: B1.过表达SpWRKY69转基因拟南芥DAB染色overexpression of SpWRKY69 transgenic A. thaliana DAB staining; B2.过表达SpWRKY69转基因拟南芥NBT染色overexpression of SpWRKY69 transgenic A. thaliana NBT staining;在30 μmol/L CdCl2胁迫下处理7 d,未处理植株作为对照(CK)treatment under 30 μmol/L CdCl2 stress for 7 days, untreated plants as control (CK)。C: S.地上部分overground part;R. 根部roots. 过表达SpWRKY69转基因拟南芥镉含量。cadmium content in transgenic A. thaliana with overexpression of SpWRKY69;Sp.转基因植株transgenic plants。D:过表达SpWRKY69转基因拟南芥转移系数transfer coefficient of transgenic A. thaliana with overexpression of SpWRKY69。取30 μmol/L CdCl2胁迫下处理7 d的根与地上部烘干后磨成粉进行测定,野生型植株作为对照(WT)。The roots and shoots treated for 7 days under 30 umol/L CdCl2 stress were dried and ground into powder, and the wild type plants were used as control (WT)."
[1] | ISHIGURO S, NAKAMURA K. Characterization of a cDNA encoding a novel DNA-binding protein,SPF1,that recognizes SP8 sequences in the 5’ upstream regions of genes coding for sporamin and β-amylase from sweet potato[J]. Molec Gen Genet, 1994, 244(6):563-571.DOI:10.1007/BF00282746. |
[2] | EULGEM T, RUSHTON P J, ROBATZEK S, et al. The WRKY superfamily of plant transcription factors[J]. Trends Plant Sci, 2000, 5(5):199-206.DOI:10.1016/S1360-1385(00)01600-9. |
[3] | WANG L N, ZHU W, FANG L C, et al. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera[J]. BMC Plant Biol, 2014, 14:103.DOI:10.1186/1471-2229-14-103. |
[4] | REN C M, ZHU Q, GAO B D, et al. Transcription factor WRKY70 displays important but no indispensable roles in jasmonate and salicylic acid signaling[J]. J Integr Plant Biol, 2008, 50(5):630-637.DOI:10.1111/j.1744-7909.2008.00653.x. |
[5] | GUILLAUMIE S, MZID R, MÉCHIN V, et al. The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco[J]. Plant Mol Biol, 2010, 72(1):215.DOI:10.1007/s11103-009-9563-1. |
[6] | JIANG C H, HUANG Z Y, XIE P, et al. Transcription factors WRKY70 and WRKY11 served as regulators in rhizobacterium Bacillus cereus AR156-induced systemic resistance to Pseudomonas syringae pv.tomato DC3000 in Arabidopsis[J]. J Exp Bot, 2015, 67(1):157-174.DOI:10.1093/jxb/erv445. |
[7] | SHENG Y B, YAN X X, HUANG Y, et al. The WRKY transcription factor,WRKY13,activates PDR8 expression to positively regulate cadmium tolerance in Arabidopsis[J]. Plant Cell Environ, 2019, 42(3):891-903.DOI:10.1111/pce.13457. |
[8] | TAO Z, KOU Y J, LIU H B, et al. OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice[J]. J Exp Bot, 2011, 62(14):4863-4874.DOI:10.1093/jxb/err144. |
[9] | CHU X Q, WANG C, CHEN X B, et al. The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana[J]. PLoS One, 2015, 10(11):e0143022.DOI:10.1371/journal.pone.0143022. |
[10] | LIU Z Q, FANG H H, PEI Y X, et al. WRKY transcription factors down-regulate the expression of H2S-generating genes,LCD and DES in Arabidopsis thaliana[J]. Sci Bull, 2015, 60(11):995-1001.DOI:10.1007/s11434-015-0787-y. |
[11] | SUN Y D, YU D Q. Activated expression of AtWRKY53 negatively regulates drought tolerance by mediating stomatal movement[J]. Plant Cell Rep, 2015, 34(8):1295-1306.DOI:10.1007/s00299-015-1787-8. |
[12] | 中国生态环境部. 2014全国土壤污染状况调查公报[EB/OL].(2014-04-17)[2021-10-12]. https://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm. |
[13] | LANE T W, MOREL F M. A biological function for cadmium in marine diatoms[J]. Proc Natl Acad Sci USA, 2000, 97(9):4627-4631.DOI:10.1073/pnas.090091397. |
[14] | ANDRESEN E, KÜPPER H. Cadmium toxicity in plants[J]. Met Ions Life Sci, 2013, 11:395-413.DOI:10.1007/978-94-007-5179-8_13. |
[15] | RODRÍGUEZ-SERRANO M, ROMERO-PUERTAS M C, PAZMIÑO D M, et al. Cellular response of pea plants to cadmium toxicity:cross talk between reactive oxygen species,nitric oxide,and calcium[J]. Plant Physiol, 2009, 150(1):229-243.DOI:10.1104/pp.108.131524. |
[16] | CHENG S P. Effects of heavy metals on plants and resistance mechanisms.A state-of-the-art report with special reference to literature published in Chinese journals[J]. Environ Sci Pollut Res Int, 2003, 10(4):256-264.DOI:10.1065/espr2002.11.141.2. |
[17] | FAROON O, ASHIZAWA A, WRZAHJ S, et al. Toxicological profile for cadmium[R]. Cleveland: USA. US Department of Energy, 1989. |
[18] | MUSZYNSKA E, HANUS-FAJERSKA E. Why are heavy metal hyperaccumulating plants so amazing?[J]. BioTechnologia, 2015, 4:265-271.DOI:10.5114/bta.2015.57730. |
[19] | LI J T, GURAJALA H K, WU L H, et al. Hyperaccumulator plants from China:a synthesis of the current state of knowledge[J]. Environ Sci Technol, 2018, 52(21):11980-11994.DOI:10.1021/acs.est.8b01060. |
[20] | PENG J S, WANG Y J, DING G, et al. A pivotal role of cell wall in cadmium accumulation in the Crassulaceae hyperaccumulator Sedum plumbizincicola[J]. Mol Plant, 2017, 10(5):771-774.DOI:10.1016/j.molp.2016.12.007. |
[21] | XU D, LU Z C, JIN K M, et al. SPDE:a multi-functional software for sequence processing and data extraction[J]. Bioinformatics, 2021, 37(20):3686-3687.DOI:10.1093/bioinformatics/btab235. |
[22] | EDGAR R C. MUSCLE:Multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Res, 2004, 32(5):1792-1797.DOI:10.1093/nar/gkh340. |
[23] | WATERHOUSE A M, PROCTER J B, MARTIN D M A, et al. Jalview Version 2: a multiple sequence alignment editor and analysis workbench[J]. Bioinformatics, 2009, 25(9):1189-1191.DOI:10.1093/bioinformatics/btp033. |
[24] | KUMAR S, STECHER G, LI M, et al. MEGA X:molecular evolutionary genetics analysis across computing platforms[J]. Mol Biol Evol, 2018, 35(6):1547-1549.DOI:10.1093/molbev/msy096. |
[25] | ZHANG H K, GAO S H, LERCHER M J, et al. EvolView,an online tool for visualizing,annotating and managing phylogenetic trees[J]. Nucleic Acids Res, 2012, 40(W1):W569-W572.DOI:10.1093/nar/gks576. |
[26] | CHEN C J, CHEN H, ZHANG Y, et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8):1194-1202.DOI:10.1016/j.molp.2020.06.009. |
[27] | LESCOT M, DÉHAIS P, THIJS G, et al. PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Res, 2002, 30(1):325-327.DOI:10.1093/nar/30.1.325. |
[28] | WANG Y P, TANG H B, DEBARRY J D, et al. MCScanX:a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Res, 2012, 40(7):e49.DOI:10.1093/nar/gkr1293. |
[29] | HAN X J, YIN H F, SONG X X, et al. Integration of small RNAs,degradome and transcriptome sequencing in hyperaccumulator Sedum alfredii uncovers a complex regulatory network and provides insights into cadmium phytoremediation[J]. Plant Biotechnol J, 2016, 14(6):1470-1483.DOI:10.1111/pbi.12512. |
[30] | SHANNON P, MARKIEL A, OZIER O, et al. Cytoscape:a software environment for integrated models of biomolecular interaction networks[J]. Genome Res, 2003, 13(11):2498-2504.DOI:10.1101/gr.1239303. |
[31] | CLOUGH S J, BENT A F. Floral dip:a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana[J]. Plant J, 1998, 16(6):735-743.DOI:10.1046/j.1365-313x.1998.00343.x. |
[32] | SAMBROOK J, FRITSCH E, MANIATIS T. Molecular cloning:a laboratory manual[J]. Trends Biotechnol, 1991, 9(1): 213-214. |
[33] | ALVAREZ M E, PENNELL R I, MEIJER P J, et al. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity[J]. Cell, 1998, 92(6):773-784.DOI:10.1016/S0092-8674(00)81405-1. |
[34] | WOHLGEMUTH H, MITTELSTRASS K, KSCHIESCHAN S, et al. Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone[J]. Plant Cell Environ, 2002, 25(6):717-726.DOI:10.1046/j.1365-3040.2002.00859.x. |
[35] | 罗夏琳, 胡玉斐, 李攻科. 微波辅助消解-电感耦合等离子体原子发射光谱测定烟草中的重金属[J]. 分析科学学报, 2016, 32(2):249-252.DOI:10.13526/j.issn.1006-6144.2016.02.020. |
LUO X L, HU Y F, LI G K. Determination of heavy metals in tobaccos by microwave-assisted digestion-inductively coupled plasma-optical emission spectrometry[J]. J Anal Sci, 2016, 32(2):249-252.DOI:10.13526/j.issn.1006-6144.2016.02.020. | |
[36] | ÜLKER B, SOMSSICH I E. WRKY transcription factors:from DNA binding towards biological function[J]. Curr Opin Plant Biol, 2004, 7(5):491-498.DOI:10.1016/j.pbi.2004.07.012. |
[37] | RUSHTON P J, SOMSSICH I E, RINGLER P, et al. WRKY transcription factors[J]. Trends Plant Sci, 2010, 15(5):247-258.DOI:10.1016/j.tplants.2010.02.006. |
[38] | KIM C Y, ZHANG S Q. Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco[J]. Plant J, 2004, 38(1):142-151.DOI:10.1111/j.1365-313x.2004.02033.x. |
[39] | XIE Z, ZHANG Z L, ZOU X L, et al. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells[J]. Plant Physiol, 2005, 137(1):176-189.DOI:10.1104/pp.104.054312. |
[40] | GUPTA S, MISHRA V K, KUMARI S, et al. Deciphering genome-wide WRKY gene family of Triticum aestivum L[J]. Genes Genom, 2019, 41(1):79-94.DOI:10.1007/s13258-018-0742-9. |
[41] | XIE T, CHEN C J, LI C H, et al. Genome-wide investigation of WRKY gene family in pineapple:evolution and expression profiles during development and stress[J]. BMC Genom, 2018, 19(1):490.DOI:10.1186/s12864-018-4880-x. |
[42] | DONG J X, CHEN C H, CHEN Z X. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response[J]. Plant Mol Biol, 2003, 51(1):21-37.DOI:10.1023/a:1020780022549. |
[43] | CHRISTIAN A, YUE R, LIU Q, et al. The WRKY gene family in rice (Oryza sativa)[J]. J Integr Plant Biol, 2007(6):827-842.DOI:10.1111/j.1744-7909.2007.00504.x. |
[44] | YANG B, JIANG Y Q, RAHMAN M H, et al. Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L.) in response to fungal pathogens and hormone treatments[J]. BMC Plant Biol, 2009, 9:68.DOI:10.1186/1471-2229-9-68. |
[45] | TIIKA R J, WEI J, MA R, et al. Identification and expression analysis of the WRKY gene family during different developmental stages in Lycium ruthenicum Murr.fruit[J]. Peer J, 2020, 8:e10207.DOI:10.7717/peerj.10207. |
[46] | WANG D, CHEN Q Y, CHEN W W, et al. A WRKY transcription factor,EjWRKY17,from Eriobotrya japonica enhances drought tolerance in transgenic Arabidopsis[J]. Int J Mol Sci, 2021, 22(11):5593.DOI:10.3390/ijms22115593. |
[47] | DANG F F, LIN J H, CHEN Y P, et al. A feedback loop between CaWRKY41 and H2O2 coordinates the response to Ralstonia solanacearum and excess cadmium in pepper[J]. J Exp Bot, 2019, 70(5):1581-1595.DOI:10.1093/jxb/erz006. |
[48] | CAI Z D, XIAN P Q, WANG H, et al. Transcription factor GmWRKY142 confers cadmium resistance by up-regulating the cadmium tolerance 1-like genes[J]. Front Plant Sci, 2020, 11:724.DOI:10.3389/fpls.2020.00724. |
[1] | 却枫, 刘庆楠, 查若飞, 魏强. 孝顺竹中笋箨衰老相关WRKY转录因子的鉴定与分析[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 113-123. |
[2] | 黄碧芸, 卓仁英, 乔桂荣. 毛竹不同类型愈伤组织比较分析[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 141-149. |
[3] | 张婷, 柏杨, 亓希武, 于盱, 房海灵, 李莉, 刘冬梅, 梁呈元, 李维林. 薄荷MhWRKY57基因克隆及响应茉莉酸信号的表达分析[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 279-287. |
[4] | 王占军, 吴子琦, 王朝霞, 欧祖兰, 李杰, 蔡倩文, 徐忠东, 张照亮. 3个茶树品种WOX基因家族的进化及密码子偏好性比较[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 71-80. |
[5] | 纳晓莹, 刘刚, 刘桂丰, 王秀伟. 4种基因表达量和光合参数差异对白桦无性系幼苗生长的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 88-94. |
[6] | 林莉莉, 胡安琪, 陈钢, 张霁月, 曹光球, 曹世江. 杉木ClWRKY44基因克隆及其表达特性分析[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 203-209. |
[7] | 王培龙, 杨妮, 张傲然, 唐努尔·塞力克, 李爽, 高彩球. 刚毛柽柳ThPCS1基因克隆与镉胁迫应答分析[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 71-78. |
[8] | 黎梦娟, 朱礼明, 霍俊男, 张景波, 施季森, 成铁龙. 唐古特白刺NtCBL1、NtCBL2基因克隆及表达分析[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 93-99. |
[9] | 王敏, 席东, 莫正海, 陈于, 赵玉强, 朱灿灿. 薄壳山核桃CiAGL6基因的克隆、亚细胞定位及表达[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 63-69. |
[10] | 田雪瑶, 周洁, 王保松, 何开跃, 何旭东. 柳树NAC基因的克隆与表达模式分析[J]. 南京林业大学学报(自然科学版), 2020, 44(1): 119-124. |
[11] | 张庆, 魏树和, 代惠萍, 贾根良. 硒对茶树镉毒害的缓解作用研究[J]. 南京林业大学学报(自然科学版), 2020, 44(1): 200-204. |
[12] | 王影,邱文敏,李鹤,贺雪莲,刘明英,韩小娇,曲同宝,卓仁英. 东南景天SaWRKY7基因对镉胁迫的响应研究[J]. 南京林业大学学报(自然科学版), 2019, 43(03): 59-66. |
[13] | 陈圆,徐传红,韩建刚. Cd胁迫对湿地沉积物反硝化与氨化相对重要性的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(02): 64-72. |
[14] | 张春红,熊振豪,吴文龙,李维林. 黑莓果实发育成熟期木质素合成CAD酶及其基因表达[J]. 南京林业大学学报(自然科学版), 2019, 43(01): 141-148. |
[15] | 吴凡,吴小芹. 细胞自噬对松材线虫繁殖存活的影响及线虫与松树互作早期自噬相关基因的表达[J]. 南京林业大学学报(自然科学版), 2018, 42(05): 59-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||