南京林业大学学报(自然科学版) ›› 2021, Vol. 45 ›› Issue (3): 183-192.doi: 10.12302/j.issn.1000-2006.202005003
张水锋1,2(), 张金池1,*(), 庄家尧1, 王新猛2, 张思玉2
收稿日期:
2020-05-13
修回日期:
2020-08-24
出版日期:
2021-05-30
发布日期:
2021-05-31
通讯作者:
张金池
基金资助:
ZHANG Shuifeng1,2(), ZHANG Jinchi1,*(), ZHUANG Jiayao1, WANG Xinmeng2, ZHANG Siyu2
Received:
2020-05-13
Revised:
2020-08-24
Online:
2021-05-30
Published:
2021-05-31
Contact:
ZHANG Jinchi
摘要:
【目的】研究年度农业非点源污染模型(Annualized agricultural non-point source pollutant loading model,AnnAGNPS)在沛桥河小流域的参数敏感性与适用性,为长三角地区的流域综合管理工作提供数据支撑和科学依据。【方法】以长江中下游水阳江水系沛桥河小流域为研究区,采用差分灵敏度分析(differential sensitivity analysis,DSA)方法进行参数敏感性分析,通过相关系数(R2)、效率系数(E)以及相对误差(ER)来综合评价模型的适用性。【结果】对研究区径流、总氮与总磷输出模拟最敏感的参数是径流曲线数(CN),对泥沙输出模拟敏感性程度最高的参数是CN、土壤可蚀性因子(K)、水土保持因子(P)与作物管理因子(C),且均呈正相关影响特征。验证期(2015—2018年)汛期与非汛期径流、泥沙、总氮与总磷的相关系数(R2)、效率系数(E)均大于0.80,相对误差(ER)的绝对值均小于12%;模型对径流与泥沙汛期的模拟精度均高于非汛期,而对总氮与总磷负荷非汛期的模拟精度略高于汛期。【结论】校准后的AnnAGNPS模型应用于沛桥河小流域的模拟效果较好,可用于辅助长三角低山丘陵区农业小流域非点源污染与水土流失管理决策。
中图分类号:
张水锋,张金池,庄家尧,等. 长三角小流域AnnAGNPS模型参数敏感性及适用性评价[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 183-192.
ZHANG Shuifeng, ZHANG Jinchi, ZHUANG Jiayao, WANG Xinmeng, ZHANG Siyu. Parameters sensitivity and applicability evaluations of AnnAGNPS model in a small watershed of the Yangtze River Delta[J].Journal of Nanjing Forestry University (Natural Science Edition), 2021, 45(3): 183-192.DOI: 10.12302/j.issn.1000-2006.202005003.
表1
CSA与MSCL取值参考"
研究区 study area | 面积/ km2 area | 临界源区 面积/hm2 CSA | 最小源区 沟道 长度/m MSCL | 水文响应 单元数量 cells number | 河段 数量 reaches number | 文献 references |
---|---|---|---|---|---|---|
中田河流域 | 47.85 | 6 | 50 | 897 | 377 | [22] |
山美水库流域 | 1 023.00 | 50 | 150 | 2 448 | 990 | [23] |
桃溪子流域 | 394.00 | 50 | 150 | 2 664 | 1 105 | [23] |
灞河流域 | 2 581.00 | 100 | 100 | 1 965 | 791 | [24] |
罗李村流域 | 743.80 | 100 | 70 | 1 030 | 420 | [25] |
岔口小流域 | 131.91 | 5 | 100 | 2 722 | 1 097 | [33] |
Red Rock Creek watershed 红石溪流域(美国) | 136.00 | 100 | 130 | 169 | - | [38] |
Little River watershed 小河流域(美国) | 333.00 | 50 | 100 | 841 | 342 | [39] |
表2
所选参数敏感性指数值与等级"
参数 parameter | 取值 范围 range | 径流深 (等级) runoff depth (rank) | 泥沙 (等级) sediment (rank) | 总氮 (等级) total nitrogen (rank) | 总磷 (等级) total phosphorus (rank) |
---|---|---|---|---|---|
径流曲线数 runoff curve number | [30,100] | 1.286 (Ⅳ) | 0.386 (Ⅲ) | 1.663 (Ⅳ) | 1.144 (Ⅳ) |
土壤可蚀性因子 K factor | [0.0,0.131 7] | 0 (Ⅰ) | 0.808 (Ⅲ) | 0.165 (Ⅱ) | 0.107 (Ⅱ) |
田间持水量 field capacity | [凋萎点, 1.0] | -0.325 (Ⅲ) | -0.031 (Ⅰ) | 0.193 (Ⅱ) | 0.473 (Ⅲ) |
土壤饱和导水率 saturated conductivity | [0.0, 254 000.0] | -0.003 (Ⅰ) | 0 (Ⅰ) | 0.012 (Ⅰ) | 0.026 (Ⅰ) |
凋萎点 wilting point | [0.0,1.0] | 0.201 (Ⅲ) | 0.019 (Ⅰ) | -0.163 (Ⅱ) | -0.064 (Ⅱ) |
土壤有机质含量 organic matter ratio | [0.0,1.0] | 0 (Ⅰ) | 0 (Ⅰ) | 0.812 (Ⅲ) | 0.633 (Ⅲ) |
作物冠层覆盖度 canopy cover | [0.0,1.0] | 0.230 (Ⅲ) | 0.013 (Ⅰ) | -0.012 (Ⅰ) | 0.030 (Ⅰ) |
肥料施用量 application rate | [0.0, 56 000.0] | 0 (Ⅰ) | 0 (Ⅰ) | 0.181 (Ⅱ) | 0.4 (Ⅲ) |
作物管理因子 constant usle C-factor | [0.0,1.0] | 0 (Ⅰ) | 0.808 (Ⅲ) | 0.165 (Ⅱ) | 0.107 (Ⅱ) |
水土保持因子 constant usle P-factor | [0.0,1.0] | 0 (Ⅰ) | 0.790 (Ⅲ) | 0.154 (Ⅱ) | 0.099 (Ⅱ) |
表3
沛桥河小流域2008—2018年基流占总径流比例计算结果"
年份 year | β1=0.9 | β2=0.92 | β3=0.935 | β4=0.95 |
---|---|---|---|---|
2008 | 0.412 | 0.400 | 0.379 | 0.361 |
2009 | 0.486 | 0.422 | 0.409 | 0.385 |
2010 | 0.427 | 0.393 | 0.372 | 0.344 |
2011 | 0.438 | 0.393 | 0.386 | 0.352 |
2012 | 0.425 | 0.401 | 0.394 | 0.373 |
2013 | 0.446 | 0.427 | 0.408 | 0.380 |
2014 | 0.465 | 0.417 | 0.405 | 0.392 |
2015 | 0.401 | 0.395 | 0.387 | 0.350 |
2016 | 0.479 | 0.458 | 0.422 | 0.397 |
2017 | 0.413 | 0.396 | 0.382 | 0.364 |
2018 | 0.383 | 0.371 | 0.359 | 0.337 |
2008—2018 | 0.434 | 0.407 | 0.391 | 0.367 |
表4
沛桥河小流域汛期与非汛期径流、泥沙、总氮、总磷模拟评价结果"
项目 item | 时间段 time zone | 模拟时期 simulation period | R2 | E | ER/% |
---|---|---|---|---|---|
径流 ruoff | 汛期flood season | 率定期calibration period | 0.846 | 0.813 | -11.581 |
验证期validation period | 0.873 | 0.842 | -11.368 | ||
非汛期non-flood season | 率定期calibration period | 0.825 | 0.765 | -12.174 | |
验证期validation period | 0.859 | 0.823 | -11.632 | ||
泥沙 sediment | 汛期flood season | 率定期calibration period | 0.895 | 0.842 | 10.072 |
验证期validation period | 0.903 | 0.856 | 9.124 | ||
非汛期non-flood season | 率定期calibration period | 0.876 | 0.839 | 10.113 | |
验证期validation period | 0.893 | 0.847 | 9.936 | ||
总氮 total nitragen | 汛期flood season | 率定期calibration period | 0.824 | 0.801 | -9.922 |
验证期validation period | 0.851 | 0.817 | -7.176 | ||
非汛期non-flood season | 率定期calibration period | 0.873 | 0.825 | -7.368 | |
验证期validation period | 0.902 | 0.863 | -6.584 | ||
总磷 total phosphorus | 汛期flood season | 率定期calibration period | 0.817 | 0.785 | -10.120 |
验证期validation period | 0.835 | 0.801 | -9.543 | ||
非汛期non-flood season | 率定期calibration period | 0.810 | 0.775 | -7.915 | |
验证期validation period | 0.857 | 0.839 | -6.437 |
[1] | THORNTON J A. Assessment and control of non-point source pollution of aquatic ecosystem[M]. New York: The Parthenon Publishing Group, 1999. |
[2] |
BAGINSKA B, MILNE-HOME W, CORNISH P S. Modelling nutrient transport in currency creek,NSW with AnnAGNPS and PEST[J]. Environ Model Softw, 2003,18(8/9):801-808.DOI: 10.1016/s1364-8152(03)00079-3.
doi: 10.1016/S1364-8152(03)00079-3 |
[3] |
YUAN Y, LOCKE M A, BINGNER R L. Annualized agricultural non-point source model application for Mississippi Delta Beasley Lake watershed conservation practices assessment[J]. J Soil Water Conserv, 2008,63(6):542-551.DOI: 10.2489/jswc.63.6.542.
doi: 10.2489/jswc.63.6.542 |
[4] | 吴永波. 河岸植被缓冲带减缓农业面源污染研究进展[J]. 南京林业大学学报(自然科学版), 2015,39(3):143-148. |
WU Y B. Research progress on the riparian vegetation buffer strip functions on agricultural nonpoint source pollution reduction[J]. J Nanjing For Univ (Nat Sci Ed), 2015,39(3):143-148.DOI: 10.3969/j.issn.1000-2006.2015.03.028. | |
[5] |
KARKI R, TAGERT M L M, PAZ J O, et al. Application of AnnAGNPS to model an agricultural watershed in east-central Mississippi for the evaluation of an on-farm water storage (OFWS) system[J]. Agric Water Manag, 2017,192:103-114.DOI: 10.1016/j.agwat.2017.07.002.
doi: 10.1016/j.agwat.2017.07.002 |
[6] |
CHAHOR Y, CASALÍ J, GIMÉNEZ R, et al. Evaluation of the AnnAGNPS model for predicting runoff and sediment yield in a small Mediterranean agricultural watershed in Navarre (Spain)[J]. Agric Water Manag, 2014,134:24-37.DOI: 10.1016/j.agwat.2013.11.014.
doi: 10.1016/j.agwat.2013.11.014 |
[7] |
ZHANG T, YANG Y H, NI J P, et al. Best management practices for agricultural non-point source pollution in a small watershed based on the AnnAGNPS model[J]. Soil Use Manage, 2020,36(1):45-57.DOI: 10.1111/sum.12535.
doi: 10.1111/sum.v36.1 |
[8] | 吴殿鸣, 薛建辉, 吴永波. 生态防护林减轻农田氮素面源污染的研究进展[J]. 南京林业大学学报(自然科学版), 2011,35(6):134-138. |
WU D M, XUE J H, WU Y B. Reviews on effects of ecological shelterbelts on alleviating non-point source pollution of nitrogen[J]. J Nanjing For Univ(Nat Sci Ed), 2011,35(6):134-138.DOI: 101.3969/j/issn.1000-2006.2011.06.028. | |
[9] | 张桂轲. 长江流域上游非点源污染及其对水文过程的响应研究[D]. 北京:清华大学, 2016. |
ZHANG G K. The non-point source pollution and the response to the hydrological processes of upper reaches of the Yangtze River[D]. Beijing:Tsinghua University, 2016. | |
[10] | 周亮, 徐建刚, 孙东琪, 等. 淮河流域农业非点源污染空间特征解析及分类控制[J]. 环境科学, 2013,34(2):547-554. |
ZHOU L, XU J G, SUN D Q, et al. Spatial heterogeneity and classified control of agricultural non-point source pollution in Huaihe River basin[J]. Environ Sci, 2013,34(2):547-554. DOI: 10.13227/j.hjkx.2013.02.020. | |
[11] | 徐勇峰, 陈子鹏, 吴翼, 等. 环洪泽湖区域农业面源污染特征及控制对策[J]. 南京林业大学学报(自然科学版), 2016,40(2):1-8. |
XU Y F, CHEN Z P, WU Y, et al. Advances on agricultural non-point source pollution and the control in regions around Hungtse Lake[J]. J Nanjing For Univ (Nat Sci Ed), 2016,40(2):1-8.DOI: 10.3969/j.issn.1000-2006.2016.02.001. | |
[12] | 包鑫, 江燕. 半干旱半湿润地区流域非点源污染负荷模型研究进展[J]. 应用生态学报, 2020,31(2):674-684. |
BAO X, JIANG Y. Research progress on non-point source pollution models for semi-arid and semi-humid watersheds[J]. Chin J Appl Ecol, 2020,31(2):674-684.DOI: 10.13287/j.1001-9332.202002.039. | |
[13] | 国家统计局. 农业生产跃上新台阶现代农业擘画新蓝图——新中国成立70周年经济社会发展成就系列报告之十二[EB/OL].(2019-08-05)[2020-01-30]. http://www.stats.gov.cn/tjsj/zxfb/201908/t20190805_1689117.html. |
[14] | 新华网. 我国化肥使用量占全球三成凸显“肥”之烦恼[EB/OL].(2015-03-17)[2020-02-15]. . |
[15] | 金书秦, 牛坤玉, 韩冬梅. 农业绿色发展路径及其“十四五”取向[J]. 改革, 2020(2):30-39. |
JIN S Q, NIU K Y, HAN D M. The path of agricultural green development and its orientation in the 14th Five-Year Plan period[J]. Reform, 2020(2):30-39. | |
[16] | 农业部. 《到2020年化肥使用量零增长行动方案》基本原则和目标任务[J]. 磷肥与复肥, 2015,30(4):4. |
[17] | 速水佑次郎, 神门善久. 农业经济论:新版[M]. 北京: 中国农业出版社,, 2003. |
YUJIRO H, YOSHIHISE G. Agricultural economics:new edition[M]. Beijing: China Agriculture Press, 2003. | |
[18] | 水利部. 2018中国河流泥沙公报[R/OL]. (2019-06-18)[2020-02-15]. http://www.mwr.gov.cn/sj/tjgb/zghlnsgb/201906/t20190618_1342326.html. |
[19] | 水利部长江水利委员会. 2018年长江流域水土保持公告[R/OL]. (2019-12-02)[2020-02-15]. http://www.cjw.gov.cn/style2013/pdf/web/?file=/UploadFiles/zwzc/2019/12/201912021529412477.pdf. |
[20] | BINGNER R L, THEURER F D. AnnAGNPS technical processes documentation Version 3.2[Z]. Washington DC: USDA-ARS, 2005. |
[21] | 边金云. AnnAGNPS模型在四岭水库小流域非点源控制中的应用研究[D]. 杭州:浙江大学, 2012. |
BIAN J Y. The application of AnnAGNPS model in non-point source pollution control in Siling Reservoir watershed[D]. Hangzhou: Zhejiang University, 2012. | |
[22] | 席庆. 基于AnnAGNPS模型的中田河流域土地利用变化对氮磷营养盐输出影响模拟研究[D]. 南京:南京农业大学, 2014. |
XI Q. Effects of land use change on nutrient export in Zhongtian River watershed based on the AnnAGNPS model[D]. Nanjing:Nanjing Agricultural University, 2014. | |
[23] | 钟科元. AnnAGNPS模型参数空间聚合水文效应研究[D]. 福州:福建师范大学, 2015. |
ZHONG K Y. Hydrological response to parameter spatial aggregation in AnnAGNPS[D]. Fuzhou:Fujian Normal University, 2015. | |
[24] | 章青青. 基于AnnAGNPS模型的灞河流域非点源污染模拟研究[D]. 西安:陕西科技大学, 2018. |
ZHANG Q Q. Simulation and research of non-point source based on AnnAGNPS model in Bahe River of China[D]. Xi’an:Shaanxi University of Science and Technology, 2018. | |
[25] | 吴道祥. 基于AnnAGNPS模型的山美水库流域氮非点源污染控制研究[D]. 福州:福建师范大学, 2017. |
WU D X. Simulation of agricultural non-point source pollution in Shanmei Reservoir watershed base on AnnAGNPS[D]. Fuzhou:Fujian Normal University, 2017. | |
[26] | 高瑞梅. 基于AnnAGNPS模型的罗李村流域水文模拟与评价[D]. 西安:陕西科技大学, 2017. |
GAO R M. Simulation and evaluation of the hydrologic process based on AnnAGNPS model in Luoli-Cun watershed of China[D]. Xi’an:Shaanxi University of Science and Technology, 2017. | |
[27] |
NOSSENT J, BAUWENS W. Multi-variable sensitivity and identifiability analysis for a complex environmental model in view of integrated water quantity and water quality modeling[J]. Water Sci Technol, 2012,65(3):539-549.DOI: 10.2166/wst.2012.884.
doi: 10.2166/wst.2012.884 |
[28] |
DIAZ-RAMIREZ J N, MCANALLY W H, MARTIN J L. Sensitivity of simulating hydrologic processes to gauge and radar rainfall data in subtropical coastal catchments[J]. Water Resour Manage, 2012,26(12):3515-3538.DOI: 10.1007/s11269-012-0088-z.
doi: 10.1007/s11269-012-0088-z |
[29] | 李海东, 林杰, 张金池, 等. 小流域尺度下土壤有机碳和全氮空间变异特征[J]. 南京林业大学学报(自然科学版), 2008,32(4):38-42. |
LI H D, LIN J, ZHANG J C, et al. Spatial variability of soil organic carbon and total nitrogen based on small watershed scale[J]. J Nanjing For Univ (Nat Sci Ed), 2008,32(4):38-42. | |
[30] | 高淳年鉴编纂委员会. 高淳年鉴2018[M]. 南京: 江苏凤凰文艺出版, 2018. |
Gaochun Yearbook Compilation Committee. Gaochun Yearbook:2018[M]. Nanjing: Jiangsu Phoenix Literature and Art Publishing, 2018. | |
[31] |
THORNTON P E, RUNNING S W. An improved algorithm for estimating incident daily solar radiation from measurements of temperature,humidity,and precipitation[J]. Agric For Meteorol, 1999,93(4):211-228.DOI: 10.1016/s0168-1923(98)00126-9.
doi: 10.1016/S0168-1923(98)00126-9 |
[32] | 翁笃鸣. 中国辐射气候[M]. 北京: 气象出版社, 1997. |
WENG D M. Radiation climate in China[M]. Beijing: China Meteorological Press, 1997. | |
[33] | 闫胜军. 岔口小流域AnnAGNPS模型验证和坡改梯生态效益分析[D]. 太谷:山西农业大学, 2014. |
YAN S J. Validating the AnnAGNPS model in the Chakou watershed and analyzing the ecological benefit of turning slope land to terrace[D]. Taigu:Shanxi Agricultural University, 2014. | |
[34] | WILLIAMS J R, DYKE P T, JONES C A. Epic: a model for assessing the effects of erosion on soil productivity[M] //Developments in Environmental Modelling. Amsterdam: Elsevier, 1983: 553-572.DOI: 10.1016/b978-0-444-42179-1.50065-1. |
[35] | NRCS. Part 630 Hydrology national engineering handbook,chapter 7: hydrologic soil group[M]. New York:US Department of Agriculture, 2009. |
[36] | 车振海. 试论土壤渗透系数的经验公式和曲线图[J]. 东北水利水电, 1995(9):17-19.DOI: 10.14124/i.cnki.dbslsd22-1097.1995.09.005. |
[37] | 胡连伍, 王学军, 罗定贵, 等. 不同子流域划分对流域径流、泥沙、营养物模拟的影响——丰乐河流域个例研究[J]. 水科学进展, 2007,18(2):235-240. |
HU L W, WANG X J, LUO D G, et al. Effect of sub-watershed partitioning on flow,sediment and nutrient predictions:case study in Fengle River watershed[J]. Adv Water Sci, 2007,18(2):235-240.DOI: 10.14042j.cnki.32.1309.2007.02.014. | |
[38] |
PARAJULI P B, NELSON N O, FREES L D, et al. Comparison of AnnAGNPS and SWAT model simulation results in USDA-CEAP agricultural watersheds in south-central Kansas[J]. Hydrol Process, 2009,23(5):748-763.DOI: 10.1002/hyp.7174.
doi: 10.1002/hyp.v23:5 |
[39] | SUTTLES J B, VELLIDIS G, BOSCH D D, et al. Watershed scale simulation of sediment andnutrient loads in Georgia coastal plain streams using the annualized agnps model[J]. Trans ASAE, 2003,46(5):1325-1335.DOI: 10.13031/2013.15443. |
[40] |
LENHART T, ECKHARDT K, FOHRER N, et al. Comparison of two different approaches of sensitivity analysis[J]. Phys Chem Earth: Parts A/B/C, 2002,27(9/10):645-654.DOI: 10.1016/s1474-7065(02)00049-9.
doi: 10.1016/S1474-7065(02)00049-9 |
[41] | 梁丽营, 高振刚, 刘德财, 等. AnnAGNPS模型在西南岩溶地区奇峰河流域的参数敏感性及适用性分析[J]. 农业环境科学学报, 2020,39(3):590-600. |
LIANG L Y, GAO Z G, LIU D C, et al. Parameter sensitivity and applicability analysis of AnnAGNPS model in Qifeng River watershed in the southwest Karst area of China[J]. J Agro-Environ Sci, 2020,39(3):590-600.DOI: 10.11654/jaes.2019-1111. | |
[42] |
LEGATES D R, MCCABE G J J. Evaluating the use of “Goodness-of-fit” measures in hydrologic and hydroclimatic model validation[J]. Water Resour Res, 1999,35(1):233-241.DOI: 10.1029/1998wr900018.
doi: 10.1029/1998WR900018 |
[43] |
MORIASI D N, ARNOLD J G, LIEW M W V, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Trans ASABE, 2007,50(3):885-900.DOI: 10.13031/2013.23153.
doi: 10.13031/2013.23153 |
[44] |
SALEH A, ARNOLD J G, GASSMAN P W, et al. Application of SWAT for the upper north Bosque River watershed[J]. Trans ASAE, 2000,43(5):1077-1087.DOI: 10.13031/2013.3000.
doi: 10.13031/2013.3000 |
[45] | 张泳华, 刘祖发, 赵铜铁钢, 等. 东江流域基流变化特征及影响因素[J]. 水资源保护, 2020,36(4):75-81. |
ZHANG Y H, LIU Z F, ZHAO T T G, et al. Variation characteristics and influencing factors of base flow in Dongjiang River basin[J]. Water Resour Prot, 2020,36(4):75-81.DOI: 10.3880/j.issn.1004-6933.2020.04.012. | |
[46] | NATHAN R J, MCMAHON T A. Evaluation of automated techniques for base flow and recession analyses[J]. Water Resour Res, 1990,26(7):1465-1473.DOI: 10.1029/wr026i007p01465. |
[47] |
李瑞, 张士锋. 两种自动基流分割方法在干旱半干旱地区的对比研究[J]. 地理科学进展, 2017,36(7):864-872.
doi: 10.18306/dlkxjz.2017.07.008 |
LI R, ZHANG S F. Comparative study on two automatic baseflow separation methods in the arid and semi-arid regions[J]. Prog Geogr, 2017,36(7):864-872.DOI: 10.18306/dlkxjz.2017.07.008. |
[1] | 纪昕雨, 于悦, 张思帆, 刘媛媛. 基于CSLE模型的大连市果园土壤侵蚀特征研究[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 117-124. |
[2] | 于悦, 赵丽君, 张威, 张科利, 刘亮. 东北黑土区不同开垦年限坡耕地坡面土壤磁化率特征研究[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 51-60. |
[3] | 梁梓澳, 王祥福, 王维枫, 闫珂, 李愿会, 董文婷, 王荣女. 青海省天保工程土壤保持效益评价研究[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 181-188. |
[4] | 王苗苗, 王恩姮, 韩明钊, 李永江, 玉苏普. 基于Le Bissonnais法研究有机物料对黑土团聚体稳定性的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 191-199. |
[5] | 陈超, 齐斐, 徐雁南, 黎家作, 赵传普, 苏新宇. 基于空间自相关的县域尺度土壤侵蚀抽样方法研究[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 177-184. |
[6] | 王保一,张荣华,荆莎莎,李欢,张春强,黎家作, 宋媛媛,罗梦琦,张光灿. 降雨和坡度对路基边坡产流产沙的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(02): 114-120. |
[7] | 王晶晶,毕华兴1,2,3,4*,孙于卜,段航旗,彭瑞东. 果树树冠遮阴模型的改进[J]. 南京林业大学学报(自然科学版), 2018, 42(05): 135-140. |
[8] | 陈茁新,张金池. 近10年全球水土保持研究热点问题述评[J]. 南京林业大学学报(自然科学版), 2018, 42(03): 167-174. |
[9] | 胡天然,王树力. 东北黑土区乌裕尔河流域侵蚀沟变化过程及影响因素[J]. 南京林业大学学报(自然科学版), 2018, 42(01): 113-119. |
[10] | 舒正悦,王景燕,龚伟,吕向楠,闫思宇,蔡煜,赵昌平. 复合养殖对柑橘林土壤微团聚体分形特征及理化性质的影响[J]. 南京林业大学学报(自然科学版), 2017, 41(05): 92-98. |
[11] | 陆桂红,杨顺,王钧,欧国强. 植物根系固土力学机理的研究进展[J]. 南京林业大学学报(自然科学版), 2014, 38(02): 151-156. |
[12] | 胡刚,宋慧,张明礼. 栅格DEM中隔断线约束算法应用评价[J]. 南京林业大学学报(自然科学版), 2014, 38(01): 140-144. |
[13] | 胡辉,张金池,朱丽珺,毕峰,杨聪. 不同降雨条件对江苏高沙土地区水土流失的影响[J]. 南京林业大学学报(自然科学版), 2012, 36(03): 149-152. |
[14] | 王进鑫;黄宝龙. 世界旱区径流林业的研究进展[J]. 南京林业大学学报(自然科学版), 2000, 24(03): 5-10. |
[15] | 王进鑫;黄宝龙. 渗水膜与吸水剂蓄水保墒耦合效应研究[J]. 南京林业大学学报(自然科学版), 2000, 24(03): 11-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||