Classification of remote sensing image based on kernel fuzzy Cmeans

SHI Yunsong, SHI Yufeng

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2010, Vol. 34 ›› Issue (06) : 164-168.

PDF(613658 KB)
PDF(613658 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2010, Vol. 34 ›› Issue (06) : 164-168. DOI: 10.3969/j.jssn.1000-2006.2010.06.036

Classification of remote sensing image based on kernel fuzzy Cmeans

  • SHI Yunsong, SHI Yufeng*
Author information +
History +

Abstract

Based on the principle of fuzzy pattern recognition and the characteristics of kernelbased method, an algorithm of kernelbased fuzzy clustering is put forward. Based on the principle of fuzzy pattern recognition and the characteristics of kernel method, the objective function of fuzzy Cmeans is substituted with a kernel objective function and the Gaussian kernel function is used in a kernelbased fuzzy clustering. The approach of kernelbased fuzzy clustering is used in the classification of remote sensing image, and the result shows that it can effectively improve the classification accuracy of remote sensing images compared with the traditional fuzzy Cmeans clustering. The approach presented in this paper can develop the application range of fuzzy pattern recognition.

Cite this article

Download Citations
SHI Yunsong, SHI Yufeng. Classification of remote sensing image based on kernel fuzzy Cmeans[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2010, 34(06): 164-168 https://doi.org/10.3969/j.jssn.1000-2006.2010.06.036

References

[1]Brown M, Lewis H G, Gunn S R. Linear spectral mixture models and support vector machines for remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2346-2360. [2]胡剑策,吴国平. 基于KL变换的BP神经网络遥感图像分类[J]. 测绘科学,2009,34(3):137-139. [3]Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algoritnms [M]. New York:Plenum Press, 1981. [4]钮永莉. 模糊模式识别方法研究及其在油气预测中的应用[D]. 福州:福州大学,2004. [5]Bezdek J C, Castelaz P F. Prototype classification and feature selection with fuzzy sets[J]. IEEE Trans SMC, 1977, 7(2): 87-92. [6]丁震,胡钟山,杨静宇,等. 一种基于模糊聚类的图像分割方法[J]. 计算机研究与发展,1997,34(7):536-541. [7]李晶皎,孙杰,姚天顺. 语音识别中基于SFCM模糊聚类的矢量量化方法[J]. 计算机研究与发展,1999,36(3):263-267. [8]王瑞花,宋建社. 基于改进FCM算法的SAR图像分类[J]. 西北大学学报,2008,38(4):574-576. [9]别怀江. 基于模糊集的遥感图像分类研究[D]. 哈尔滨:哈尔滨工程大学,2005. [10]罗来平. 遥感图像分类中模糊模式识别和决策树方法的应用研究[D]. 北京:首都师范大学,2006. [11]高新波,谢维信. 模糊聚类理论发展及其应用的研究进展[J]. 科学通报,1999,44(21):2241-2251. [12]孙即祥. 现代模式识别[M]. 2版. 北京:高等教育出版社,2008. [13]肖健华. 智能模式识别方法[M]. 广州:华南理工大学出版社,2006. [14]曲福恒,马驷良,胡雅婷. 一种基于核的模糊聚类算法[J]. 吉林大学学报:理学版,2008,46(6):1137-1141. [15]纪秋颖,林健. 基于核方法的聚类算法及其应用[J]. 北京航空航天大学学报,2006,32(6):747-750.
PDF(613658 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/