The dynamic viscoelastic properties of fastgrowing poplar samples with difference initial moisture content were studied by DMA at the following conidition of temperature range from 35 ℃ to 350 ℃, heating rate with 5 ℃/min, measuring frequency with 1,10,50 Hz. The storage modulus results showed that the sample with 0 % moisture content got maximum elasticity at 95 ℃. With increasing temperature, the elasticity of samples with 12 %,18 %,30 % moisture content decreased slowly before 75 ℃,and decreased rapidly between 75 ℃and 130 ℃, for the sample with 12 % moisture content(equilibrium moisture content), the elasticity decreasing range was the smallest in all water content samples; For the samples with 50 %,80 %,100 % and watersaturated, the elasticity variety points happened after 135 ℃, the temperatures of elasticity variation points got increased with increasing moisture content,and had minimums elasticity at variation points. The loss modulus results showed that the glass transition never happened in the whole temperature range with 0 % moisture content sample; in all water content samples, 12 % moisture content specimens had the lowest initial loss modulus and secondary transition loss modulus, compared with the samples of 18 % and 30 % moisture content, the sample with 12 % moisture content had the highest temperature of secondary transition; the sample with 30 % moisture content (fiber saturation point) had the maximum viscosity in all water content samples. The data of loss factor also showed all the samples with water content had the process of glass transition, and the sample with 30 % moisture content got the lowest temperature when the glass transition happened. The measuring frequency with1, 10 and 50 Hz less affected on the storage modulus, loss modulus and loss factor, with the measuring frequency increased, the described curve of mechanical relaxation process moved slightly to high temperature.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1]李大纲. 速生人工林杨树的木材材性[J].中国木材,2002(2): 37-39.
[2] 王桂岩, 王彦, 李善文,等.13种杨树木材物理力学性质的研究[J].山东林业科技, 2001(2): 1-11.
[3] 鲍甫成,江泽慧,刘盛全.人工林场树材性与生长轮年龄和生长速度关系的模型[J].林业科学, 1999,35(1): 77-82.
[4] 刘盛全, 江泽慧, 鲍甫成. 人工林场杨木材性质与生长培育关系的研究[J].林业科学, 2001, 37(2): 90-96.
[5]窦金龙,汪旭光,刘云川.杨木的动态力学性能[J].爆炸与冲击,2008, 28(4):367-371.
[6]程瑞香.动态热机械分析在木材加工行业的应用[J].木材工业, 2005,19(4): 28-30.
[7]关明杰,张齐生.竹材湿热效应的动态热机械分析[J].南京林业大学学报:自然科学版,2006,30(1): 65-68.
[8] 蒋佳荔,吕建雄.干燥处理材的动态粘弹性[J].北京林业大学学报, 2008,30(3): 96-100.
[9]孙才英,史桂香,武兰在,等.杨木热分析[J]. 东北林业大学学报, 1998, 26(1): 38-41.
[10]Hirai N,Sobue N,Asano I. Studies on piezoelectric effect of wood(Ⅳ):Effect of heat treatment on cellulose crystallites and piezoelectric effect of wood[J].Mokuzai Gakkaishi, 1972, 18 (11):535-542.
[11]Kjbojima Y,Okana T,Ohta M. Vibrational properties of sitka spruce heattreated in nitrogen gas[J].Journal of Wood Science,1998,44(1):73-77.
[12]Back E L,Salme N L. Glass transition of wood components hold implications for molding and pulping processes[J].Tappi Journal,1982,65(7):107-110.[l3]Chow S Z,Pickeles K J.Thermal softening and degradation of wood and bark[J].Wood and Fiber Science,1971,3(2):166-178.
[14]土井登,伏谷贤美,蕪木自輔. ドライソダットにする木材中のルロース结晶の变形,吸湿及ひ吸水にするその変形の回復[J]. 木材学会誌,1980, 26 (9): 603-607.
[15]宇高英二,古野毅. 密閉加熱処理にする密閉加熱処理にする埑弅木材の結晶構造の変化[J]. 木材学会誌, 2003,49(1):1-6.
[16]飯田生穂,則元京,今村祐嗣. 圧縮トの水分·熱回復[J]. 木材学会誌, 1984, 30(5): 354-358.
[17]王雁冰, 黄志雄,张联盟. DMA在高分子材料研究中的应用[J]. 国外建材科技, 2004,25(2):25-27.