JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2019, Vol. 43 ›› Issue (5): 59-66.doi: 10.3969/j.issn.1000-2006.201811018
Previous Articles Next Articles
WANG Li1(), LI Changrong2(), LI Fagen1, ZHOU Changpin1, WENG Qijie1, LÜ Jiabin1, CHEN Jianbo2, CHEN Jiancheng3, GAN Siming1,2,*()
Received:
2018-11-09
Revised:
2018-12-19
Online:
2019-10-08
Published:
2019-10-08
Contact:
GAN Siming
E-mail:wangli3hao@126.com;andyharry@126.com;siminggan@caf.ac.cn
CLC Number:
WANG Li, LI Changrong, LI Fagen, ZHOU Changpin, WENG Qijie, LÜ Jiabin, CHEN Jianbo, CHEN Jiancheng, GAN Siming. SSR loci associated with population adaptation in Eucalyptus cloeziana[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(5): 59-66.
Fig.1
Geographical distribution of the 14 E. cloeziana populations The northern coastal and inland populations were underlined and rectangled, respectively, with the rest being southern coastal populations. Within the brackets following each population, letters represented the population abbreviation, and numeral(s) indicated the population size. QLD. Queensland, Austraila."
Fig.2
Genomic location of the 84 SSR loci and Fst outliers detected E. grandis genome assembly v2.0 ( https://phytozome.jgi.doe.gov/pz/portal.html#!search?show=BLAST&method=Org_Egrandis) was used as the reference genome (Mb in the left ruler). The Fst outlying loci were underlined, and the letter(s) following the asterisk indicated the software in which a specific Fst outlier was detected. "
Table 1
Averages for the four climatic factors during 1950-2000 and frequencies of the climate-associated SSR alleles"
区域 region | 群体 popu- lation | 海拔/m altitude | 气候因子climatic factors | 频率/% frequency | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tma/ ℃ | Tmcm/ ℃ | Tmwm/ ℃ | Pwq/ mm | Embra6- 118 bp | Embra20- 121 bp | EUCeSSR 298- 265 bp | EUCeSSR 676- 168 bp | EUCeSSR 1009- 179 bp | EUCeSSR 1009- 189 bp | ||||||||||||
北部 north | SC | 250 | 24.2 | 16.8 | 30.9 | 932 | 0.0 | 50.0 | 35.7 | 57.1 | 7.1 | 28.6 | |||||||||
Bar | 830 | 20.7 | 10.9 | 29.1 | 809 | 0.0 | 0.0 | 50.0 | 12.5 | 12.5 | 75.0 | ||||||||||
Rav | 1 000 | 19.5 | 8.9 | 28.5 | 661 | 0.0 | 8.3 | 50.0 | 16.7 | 16.7 | 25.0 | ||||||||||
CarS | 20 | 23.8 | 13.6 | 31.6 | 1097 | 20.0 | 5.0 | 55.0 | 50.0 | 10.0 | 40.0 | ||||||||||
Car | 6 | 23.9 | 13.8 | 31.6 | 1124 | 12.5 | 0.0 | 52.5 | 65.0 | 2.5 | 47.5 | ||||||||||
PR | 300 | 22.0 | 10.9 | 30.6 | 568 | 25.0 | 12.5 | 0.0 | 62.5 | 12.5 | 25.0 | ||||||||||
MP | 600 | 22.5 | 12.0 | 31.2 | 682 | 20.0 | 0.0 | 10.0 | 70.0 | 0.0 | 50.0 | ||||||||||
平均 mean | 429.4 | 22.4 | 12.41 | 30.50 | 839.0 | 11.07 | 10.83 | 36.17 | 47.69 | 8.76 | 41.59 | ||||||||||
南部 south | Nee | 70 | 20.8 | 9.2 | 29.9 | 485 | 42.9 | 35.7 | 7.1 | 7.1 | 50.0 | 0.0 | |||||||||
GV | 100 | 20.4 | 7.9 | 30.2 | 482 | 50.0 | 50.0 | 0.0 | 0.0 | 40.0 | 0.0 | ||||||||||
WWP | 210 | 20.3 | 8.4 | 29.7 | 513 | 40.0 | 40.0 | 0.0 | 10.0 | 50.0 | 0.0 | ||||||||||
Wol | 120 | 20.3 | 8.4 | 29.7 | 513 | 62.5 | 43.8 | 0.0 | 0.0 | 50.0 | 0.0 | ||||||||||
TC | 80 | 20.5 | 9.0 | 29.3 | 567 | 62.5 | 50.0 | 0.0 | 0.0 | 50.0 | 0.0 | ||||||||||
Woo | 400 | 19.6 | 7.9 | 28.9 | 567 | 66.7 | 44.4 | 11.1 | 0.0 | 33.3 | 5.6 | ||||||||||
Pom | 40 | 20.3 | 8.8 | 28.9 | 623 | 61.1 | 50.0 | 61.1 | 0.0 | 50.0 | 0.0 | ||||||||||
平均 mean | 145.7 | 20.30 | 8.51 | 29.51 | 535.7 | 55.09 | 44.84 | 11.34 | 2.45 | 46.19 | 0.79 |
Table 2
The SSR alleles significantly associated with four least-correlated climatic factors and the Efron statistics of association"
SSR位点 SSR locus | 等位 片段/bp allele | Tma | Tmcm | Tmwm | Pwq |
---|---|---|---|---|---|
Embra6 | 118 | - | 0.537 1*** | - | - |
Embra20 | 121 | - | - | - | 0.382 6*** |
EUCeSSR298 | 265 | - | - | - | 0.356 6*** |
EUCeSSR676 | 168 | 0.662 2*** | 0.661 2*** | 0.621 5*** | 0.496 1*** |
EUCeSSR1009 | 179 | 0.523 3*** | 0.590 1*** | 0.457 4*** | 0.535 7*** |
189 | 0.551 0*** | 0.617 4*** | 0.489 0*** | 0.550 3*** |
[1] |
ROOT T L, PRICE J T, HALL K R, et al. Fingerprints of globalwarming on wild animals and plants[J]. Nature, 2003, 421(6918):57-60. DOI: 10.1038/nature01333.
doi: 10.1038/nature01333 |
[2] |
DAVIS M B, SHAW R G. Range shifts and adaptive responses to Quaternary climate change[J]. Science, 2001, 292(5517):673-679. DOI: 10.1126/science.292.5517.673.
doi: 10.1126/science.292.5517.673 |
[3] |
JUMP A S, PEÑUELAS J. Running to stand still: adaptation and the response of plants to rapid climate change[J]. Ecology Letters, 2005, 8(9):1010-1020. DOI: 10.1111/j.1461-0248.2005.00796.x.
doi: 10.1111/ele.2005.8.issue-9 |
[4] |
SAVOLAINEN O, LASCOUX M, MERILÄ J. Ecological genomics of local adaptation[J]. Nature Reviews Genetics, 2013, 14(11):807-820. DOI: 10.1038/nrg3522.
doi: 10.1038/nrg3522 |
[5] |
DELPH L F. The study of local adaptation: a thriving field of research[J]. Journal of Heredity, 2018, 109(1):1-2. DOI: 10.1093/jhered/esx099.
doi: 10.1093/jhered/esx099 |
[6] |
CSILLÉRY K, LALAGÜE H, VENDRAMIN G G. Detecting short spatial scale local adaptation andepistatic selection in climate-related candidate genes in European beech (Fagus sylvatica) populations[J]. Molecular Ecology, 2014, 23(19):4696-4708. DOI: 10.1111/mec.12902.
doi: 10.1111/mec.12902 |
[7] |
AITKEN SN, YEAMAN S, HOLLIDAY J A, et al. Adaptation, migration orextirpation: climate change outcomes for tree populations[J]. Evolutionary Applications, 2008, 1(1), 95-111. DOI: 10.1111/j.1752-4571.2007.00013.x.
doi: 10.1111/j.1752-4571.2007.00013.x |
[8] |
SAVOLAINEN O, PYHÄJÄRVI T, KNÜRR T. Gene flow and local adaptation in trees[J]. Annual Review of Ecology, Evolution, and Systematics, 2007, 38:595-619. DOI: 10.1146/annurev.ecolsys.38.091206.095646.
doi: 10.1146/annurev.ecolsys.38.091206.095646 |
[9] |
KAWECKI T J, EBERT D. Conceptual issues in local adaptation[J]. Ecology Letters, 2004, 7(12):1225-1241. DOI: 10.1111/j.1461-0248.2004.00684.x.
doi: 10.1111/ele.2004.7.issue-12 |
[10] |
GIENAPP P, TEPLITSKY C, ALHO J S, et al. Climate change and evolution: disentangling environmental and genetic responses[J]. Molecular Ecology, 2008, 17(1):167-178. DOI: 10.1111/j.1365-294X.2007.03413.x.
doi: 10.1111/mec.2008.17.issue-1 |
[11] |
BRADBURY D, SMITHSON A, KRAUSS S L. Signatures of diversifying selection at EST-SSR loci and association with climate in naturalEucalyptus populations[J]. Molecular Ecology, 2013, 22(20):5112-5129. DOI: 10.1111/mec.12463.
doi: 10.1111/mec.12463 |
[12] |
SONG Z, ZHANG M, LI F, et al. Genome scans for divergent selection in natural populations of the widespread hardwood species Eucalyptus grandis ( Myrtaceae) using microsatellites[J]. Scientific Reports, 6:34941. DOI: 10.1038/srep34941.
doi: 10.1038/srep34941 |
[13] | LIND B M, MENON M, BOLTE C E, et al. The genomics of local adaptation in trees: are we out of the woods yet[J]. Tree Genetics & Genomes, 2018, 14(2):29. DOI: 10.1007/s11295-017-1224-y. |
[14] |
BROOKER M I H. A new classification of the genus Eucalyptus L’Hér.(Myrtaceae)[J]. Australian Systematic Botany, 2000, 13(1):79-148. DOI: 10.1071/SB98008.
doi: 10.1071/SB98008 |
[15] | TURNBULL J. Geographical variation in Eucalyptus cloeziana F. Muell.[D]. Canberra: Australian National University, 1979. |
[16] | NGUGI M R, DOLEY D, HUNT MA, et al. Physiological responses to water stress in Eucalyptus cloeziana and E. argophloia seedlings[J]. Trees, 2004, 18(4):381-389. DOI: 10.1007/s00468-003-0316-5. |
[17] | LI C, WENG Q, CHEN J, et al. Genetic parameters for growth and wood mechanical properties inEucalyptus cloeziana F. Muell.[J]. New Forests, 48(1):33-49. DOI: 10.1007/s11056-016-9554-4. |
[18] | 宋志姣, 杨合宇, 翁启杰, 等. 细叶桉群体的遗传多样性和受选择位点[J]. 林业科学, 2016, 52(9):39-47. DOI: 10.11707/j.1001-7488.20160905. |
SONG Z J, YANG H Y, WENG Q J, et al. Genetic diversity and selective loci in Eucalyptus tereticornis populations [J]. Scientia Silvae Sinicae, 2016, 52(9):39-47. | |
[19] |
BRONDANI R P V, WILLIAMS E R, BRONDANI C, et al. A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus[J]. BMC Plant Biology, 2006, 6:20. DOI: 10.1186/1471-2229-6-20.
doi: 10.1186/1471-2229-6-20 |
[20] | 周长品, 李发根, 翁启杰, 等. PCR产物直接测序和混合克隆测序进行桉树EST-SSR标记开发[J]. 分子植物育种(网络版), 2010, 8(1):e1. DOI: 10.5376/mpb.cn.2010.08.0001. |
ZHOU C P, LI F G, WENG Q J, et al. Comparison between direct sequencing and pool-cloning-based sequencing of PCR products in EST-SSR marker development in Eucalyptus [J]. Molecular Plant Breeding (online), 2010, 8(1):e1. | |
[21] |
HE X, WANG Y, LI F, et al. Development of 198 novel EST-derived microsatellites in Eucalyptus (Myrtaceae)[J]. American Journal of Botany, 2012, 99(4):e134-e148. DOI: 10.3732/ajb.1100442.
doi: 10.3732/ajb.1100442 |
[22] |
ZHOU C, HE X, LI F, et al. Development of 240 novel EST-SSRs in Eucalyptus L’Hérit.[J]. Molecular Breeding, 2014, 33(1):221-225. DOI: 10.1007/s11032-013-9923-z.
doi: 10.1007/s11032-013-9923-z |
[23] |
LI F, GAN S. An optimised protocol for fluorescent-dUTP based SSR genotyping and its application to genetic mapping in Eucalyptus[J]. Silvae Genetica, 2011, 60(1):18-25.
doi: 10.1515/sg-2011-0003 |
[24] |
PEAKALL R, SMOUSE P. GenAlEx 6: genetic analysis in excel. Population genetic software for teaching and research[J]. Molecular Ecology Notes, 2006, 6(1):288-295. DOI: 10.1111/j.1471-8286.2005.01155.x.
doi: 10.1111/men.2006.6.issue-1 |
[25] |
HIJMANS R J, CAMERSON S E, PARRA J L, et al. Very high resolution interpolated climate surfaces for global land areas[J]. International Journal of Climatology, 2005, 25(15):1965-1978. DOI: 10.1002/joc.1276.
doi: 10.1002/(ISSN)1097-0088 |
[26] |
ANTAO T, LOPES A, LOPES R J, et al. LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method[J]. BMC Bioinformatics, 2008, 9(1):323. DOI: 10.1186/1471-2105-9-323.
doi: 10.1186/1471-2105-9-323 |
[27] |
EXCOFFIER L, LISCHER H E L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows[J]. Molecular Ecology Resources, 2010, 10(3):564-567. DOI: 10.1111/j.1755-0998.2010.02847.x.
doi: 10.1111/men.2010.10.issue-3 |
[28] |
FOLL M, GAGGIOTTI O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective[J]. Genetics, 2008, 180(2):977-993. DOI: 10.1534/genetics.108.092221.
doi: 10.1534/genetics.108.092221 |
[29] |
STUCKI S, OROZCO-TERWENGEL P, FORESTER B R, et al. High performance computation of landscape genomic models including local indicators of spatial association[J]. Molecular Ecology Resources, 2017, 17(5):1072-1089. DOI: 10.1111/1755-0998.12629.
doi: 10.1111/men.2017.17.issue-5 |
[30] | 王莉, 李昌荣, 李发根, 等. 大花序桉SSR位点多样性和群体结构分析[J]. 分子植物育种, 2019, 17(13):4470-4478. DOI: 10.13271/j.mpb.017.004470. |
WANG L, LI C R, LI F G, et al. SSR marker diversity and population structure in Eucalyptus cloeziana [J]. Molecular Plant Breeding, 2019, 17(13):4470-4478. | |
[31] |
HILL R S. Origins of the southeastern Australian vegetation[J]. Philosophical Transactions of the Royal Society B. Biological Science, 2004, 359(1450):1537-1549. DOI: 10.1098/rstb.2004.1526.
doi: 10.1098/rstb.2004.1526 |
[32] | SHEPHERD M, SEXTON T R, THOMAS D, et al. Geographical and historical determinants of SSR variation in Eucalyptus pilularis[J]. Canadian Journal of Forest Research, 2010, 359(1450):1537-1549. DOI: 10.1139/X10-049. |
[33] |
PRUNIER J, LAROCHE J, BEAULIEU J, et al. Scanning the genome for gene SNPs related to climate adaptation and estimating selection at the molecular level in boreal black spruce[J]. Molecular Ecology, 2011, 20(8):1702-1716. DOI: 10.1111/j.1365-294X.2011.05045.x.
doi: 10.1111/mec.2011.20.issue-8 |
[34] | LIN Y, ZHENG H, ZHANG Q, et al. Functional profiling of EcaICE1 transcription factor gene from Eucalyptus camaldulensis, involved in cold response in tobacco plants[J]. Journal of Plant Biochemistry & Biotechnology, 2014, 23(2):141-150. DOI: 10.1007/s13562-013-0192-z. |
[35] |
LUKATKIN A S. Contribution of oxidative stress to the development of cold-induced damage to leaves of chilling-sensitive plants: 2. the activity of antioxidant enzymes during plant chilling[J]. Russian Journal of Plant Physiology, 2002, 49(6):782-788. DOI: 10.1023/A:1020232700648.
doi: 10.1023/A:1020965629243 |
[36] |
SAUER N. Molecular physiology of higher plant sucrose transporters[J]. FEBS Letters, 2007, 581(12):2309-2317. DOI: 10.1016/j.febslet.2007.03.048.
doi: 10.1016/j.febslet.2007.03.048 |
[37] |
NILSEN E T, MULLER W H. Phenology of the drought-deciduous shrub Lotus scoparius: climatic controls and adaptive significance[J]. Ecological Monographs, 1981, 51(3):323-341. DOI: 10.2307/2937277.
doi: 10.2307/2937277 |
[38] | LIU Y, ZHANG T, LI X, et al. Protective mechanism of desiccation tolerance in Reaumuria soongorica: leaf abscission and sucrose accumulation in the stem[J]. Science in China Ser C: Life Sciences, 2007, 50(1):15-21.DOI: 10.1007/s11427-007-0002-8. |
[39] |
PLÜCKEN H, MÜLLER B, GROHMANN D, et al. The HCF136 protein is essential for assembly of the photosystem Ⅱ reaction center in Arabidopsis thaliana[J]. FEBS Letters, 2002, 532(1):85-90. DOI: 10.1016/S0014-5793(02)03634-7.
doi: 10.1016/S0014-5793(02)03634-7 |
[40] |
KOMENDA J, NICKELSEN J, TICHY M, et al. The cyanobacterial homologue of HCF136/YCF48 is a component of an early photosystem Ⅱ assembly complex and is important for both the efficient assembly and repair of photosystem Ⅱ in Synechocystis sp. PCC 6803[J]. Journal of Biological Chemistry, 2008, 283(33):22390-22399. DOI: 10.1074/jbc.M801917200.
doi: 10.1074/jbc.M801917200 |
[41] |
MEURER J, PLÜCKEN H, KOWALLIK K V, et al. A nuclear-encoded protein of prokaryotic origin is essential for the stability of photosystem Ⅱ in Arabidopsis thaliana[J]. EMBO Journal, 2014, 17(18):5286-5297. DOI: 10.1093/emboj/17.18.5286.
doi: 10.1093/emboj/17.18.5286 |
[42] |
SCHLÖTTERER C. Hitchhiking mapping-functional genomics from the population genetics perspective[J]. Trends in Genetics, 2003, 19(1):32-38. DOI: 10.1016/S0168-9525(02)00012-4.
doi: 10.1016/S0168-9525(02)00012-4 |
[1] | LUO Chuying, SHE Jiyun, TANG Zichao. Prediction of potential distribution areas of the endangered Cathaya argyrophylla based on shared socio-economic pathways (SSPs) climate scenarios [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 161-168. |
[2] | WANG Huanli, YAN Lingjun, HUANG Xi, WANG Zhongwei, TANG Shijie. Genetic diversity and genetic structure of Tilia miqueliana population [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 145-153. |
[3] | LI Dandan, WENG Qijie, GAN Siming, ZHOU Changpin, HUANG Shineng, LI Mei. Identification of full-sib seedlings from an open-pollinated family of Archidendron clypearia based on EST-SSR markers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 95-101. |
[4] | FENG Yining, LI Yingang, QI Ming, ZHOU Pengyan, ZHOU Qi, DONG Le, XU Li’an. Genetic diversity analyses of Phoebe bournei representative populations in Fujian Province based on SSR markers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 102-108. |
[5] | HE Xudong, ZHENG Jiwei, SUN Chong, HE Kaiyue, WANG Baosong. Construction of fingerprints for 33 varieties in Salicaceae [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(2): 35-42. |
[6] | HUANG Honglan, ZHONG Wogu, YI Deping, CAI Junhuo, ZHANG Lu. Predicting the impact of future climate change on the distribution patterns of Toona ciliata var. pubescens in China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(3): 163-170. |
[7] | RONG Hao, HUANG Bin, ZHOU Qi, ZHANG Wangxiang, XU Li'an. The construction of fingerprints and genetic diversity analysis of 61 Malus crabapple cultivars based on SSR markers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(03): 45-50. |
[8] | LUO Peng, CAO Yuting, MO Jiaxing, WENG Huaifeng, SHI Jisen, XU Jin. Analysis of genetic diversity and construction of DNA fingerprinting of clones in Cryptomeria fortune [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(04): 191-196. |
[9] | JIANG Dalong, XU Xia, RUAN Honghua. Review of nutrient resorption and its regulating in plants [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(01): 183-188. |
[10] | CHENG Zehu,DING Kunyuan,LIU Yanhong. Relationship between arborous layer productivity and climatic factors in Pinus tabulaeformis natural forests and plantations in Beijing [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(05): 177-183. |
[11] | ZHOU Wencai, HOU Jing, GUO Wei, CHEN Yingnan, WAN Zhibing, YIN Tongming. Identification of the true hybrids for Populus deltoides by using SSR markers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2015, 39(03): 45-49. |
[12] | OUYANG Lei, CHEN Jinhui, ZHENG Renhua, XU Yang, LIN Yufeng, HUANG Jinhua, YE Daiquan, FANG Yanghui, SHI Jisen. Genetic diversity among the germplasm collections of the Chinese fir in 1st breeding population upon SSR markers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(01): 21-26. |
[13] | Ye Zhihong Shi Jisen Weng Yuzhen Li Shaumao Yu Rongzhou Chen Renxian (Nanjing Forestry University). GEOGRAPHIC VARIATION AND INHERITANCE, CORRELATION AND SELECTION OF TRAITS OF PROVENANCES OF CHINESE FIR [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 1991, 15(02): 7-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||