JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (2): 165-172.doi: 10.3969/j.issn.1000-2006.201903025
Previous Articles Next Articles
WEI Yulong1(), ZHANG Qiuliang1,2,*()
Received:
2019-03-08
Revised:
2019-05-13
Online:
2020-03-30
Published:
2020-04-01
Contact:
ZHANG Qiuliang
E-mail:2418089938@qq.com;18686028468@163.com
CLC Number:
WEI Yulong, ZHANG Qiuliang. Forest edge renewal of Larix gmelinii and its response to the environment[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(2): 165-172.
Table 1
Basic situation of stand survey in sample belt"
样地 sample plot | 样带号 belt No. | 郁闭度 crown density | 上层乔木林 密度/ (株·hm-2) upper arbor density | 树种组成 tree species | 更新株数 updated shares |
---|---|---|---|---|---|
Ⅰ | A | 0.64 | 2 000 | 7落3桦 | 225 |
B | 0.70 | 2 000 | 9落1桦 | 106 | |
C | 0.82 | 2 000 | 9落1桦 | 90 | |
D | 0.66 | 2 350 | 9落1桦 | 108 | |
Ⅱ | A | 0.74 | 3 100 | 8落2桦 | 98 |
B | 0.73 | 2 850 | 9落1桦 | 52 | |
C | 0.68 | 2 900 | 9落1桦 | 47 | |
D | 0.70 | 3 050 | 9落1桦 | 54 | |
Ⅲ | A | 0.65 | 2 100 | 8落2桦 | 80 |
B | 0.70 | 2 150 | 9落1桦 | 58 | |
C | 0.74 | 2 050 | 9落1桦 | 65 | |
D | 0.65 | 2 000 | 9落1桦 | 60 |
Table 2
Standardized for data of seedling regeneration survey in Larix gmelinii forest, their calculating parameter and relevance coefficient of regeneration index "
样地 sample plot | 样带号 belt No. | 分布状况distribution | 生长状况growing situation | 年龄结构age structure | |||||
---|---|---|---|---|---|---|---|---|---|
株数 number | 频度 frequency | 更新评价 相关系数 relevance coefficient | 平均高 height | 平均地径 dimeter | 更新评价 相关系数 relevance coefficient | 大苗百分比 percentage of big seedling | 更新评价 相关系数 relevance coefficient | ||
Ⅰ | A | 1.00 | 1.00 | 0.915 | 0.66 | 0.71 | 0.036 | 0.69 | 0.022 |
B | 0.47 | 0.51 | 0.447 | 1.00 | 0.82 | 0.049 | 0.80 | 0.026 | |
C | 0.40 | 0.50 | 0.408 | 0.96 | 0.82 | 0.048 | 0.97 | 0.031 | |
D | 0.48 | 0.48 | 0.439 | 0.97 | 0.97 | 0.051 | 1.00 | 0.032 | |
Ⅱ | A | 0.43 | 0.53 | 0.435 | 0.70 | 0.78 | 0.039 | 0.73 | 0.023 |
B | 0.23 | 0.24 | 0.215 | 0.91 | 0.89 | 0.048 | 0.85 | 0.027 | |
C | 0.21 | 0.25 | 0.209 | 1.00 | 0.87 | 0.050 | 0.99 | 0.032 | |
D | 0.24 | 0.25 | 0.224 | 0.91 | 1.00 | 0.050 | 0.90 | 0.029 | |
Ⅲ | A | 0.35 | 0.43 | 0.353 | 0.82 | 0.76 | 0.042 | 0.86 | 0.028 |
B | 0.26 | 0.31 | 0.259 | 0.97 | 0.98 | 0.052 | 0.97 | 0.031 | |
C | 0.29 | 0.32 | 0.278 | 0.86 | 0.78 | 0.044 | 0.73 | 0.023 | |
D | 0.27 | 0.29 | 0.255 | 0.93 | 0.87 | 0.048 | 0.88 | 0.028 | |
信息熵information entropy | 0.953 | 0.961 | 0.997 | 0.998 | 0.997 | ||||
变异系数coefficient of variation | 0.047 | 0.039 | 0.003 | 0.002 | 0.003 | ||||
权重weights | 0.500 | 0.415 | 0.032 | 0.021 | 0.032 |
Table 3
Environmental factors in each sample zone of three forest margin plots"
样地 sample plot | 样带号 belt No. | 光合有效辐射/ (μmol·m-2·s-1) PAR | 空气湿度/% air humidity | 气温/℃ air temperature |
---|---|---|---|---|
Ⅰ | A | 73.35±2.56 a | 65.09±7.68 a | 22.25±0.27 a |
B | 62.39±4.98 b | 67.15±7.06 a | 21.63±0.25 b | |
C | 57.35±4.98 b | 67.62±6.63 a | 21.51±0.26 b | |
D | 56.93±4.82 b | 68.18±6.97 a | 21.36±0.17 b | |
Ⅱ | A | 87.27±3.84 a | 68.66±5.72 a | 21.98±0.37 a |
B | 72.76±5.30 b | 69.11±5.46 a | 21.38±0.19 b | |
C | 71.43±4.28 b | 69.46±5.17 a | 21.17±0.32 b | |
D | 73.75±6.15 b | 70.22±6.22 a | 21.20±0.19 b | |
Ⅲ | A | 67.07±2.84 a | 69.46±5.94 a | 22.49±0.47 a |
B | 54.05±3.91 b | 69.81±5.77 a | 21.67±0.31 b | |
C | 55.13±2.13 b | 70.42±5.87 a | 21.68±0.33 b | |
D | 54.55±4.94 b | 70.51±5.35 a | 21.62±0.28 b |
Table 4
Soil physical and chemical properties in each sample zone of three forest margin plots"
样地 sample plot | 样带号 belt No. | 土壤含水率/% soil moisture content | 土壤密度/ (g·cm-3) soil bulk density | 速效钾含量/ (mg·kg-1) available K content | 有机质含量/ (g·kg-1) organic matter content | 有效磷含量/ (mg·kg-1) available P content | pH | 铵态氮含量/ (mg·kg-1) ammonium N content | 全磷含量/ (g·kg-1) total phosphorus content |
---|---|---|---|---|---|---|---|---|---|
Ⅰ | A | 17.29±0.51 a | 1.47±0.05 a | 57.62±3.05 b | 61.59±5.15 a | 80.72±1.66 a | 5.69±0.08 b | 32.27±2.15 a | 2.27±0.03 a |
B | 16.85±0.44 a | 1.47±0.06 a | 59.50±1.34 b | 41.25±4.88 b | 52.93±6.48 b | 5.87±0.06 a | 24.91±2.86 b | 1.75±0.07 b | |
C | 17.29±0.69 a | 1.42±0.05 a | 61.26±5.18 ab | 40.87±4.03 b | 55.56±5.91 b | 5.89±0.06 a | 23.90±3.85 b | 1.71±0.03 b | |
D | 17.25±0.36 a | 1.42±0.04 a | 67.45±5.69 a | 40.42±3.87 b | 52.45±6.46 b | 5.85±0.04 a | 23.65±2.79 b | 1.69±0.04 b | |
Ⅱ | A | 11.44±0.26 b | 1.72±0.05 a | 53.83±4.62 b | 56.49±1.85 a | 60.71±4.60 a | 5.50±0.14 b | 29.97±2.50 a | 2.04±0.06 a |
B | 12.63±0.40 a | 1.58±0.06 b | 64.74±6.68 a | 35.38±6.09 b | 50.21±4.83 b | 5.73±0.09 a | 19.01±2.26 b | 1.28±0.07 b | |
C | 12.99±0.41 a | 1.60±0.05 b | 65.65±3.23 a | 33.58±5.80 b | 46.80±6.46 b | 5.77±0.07 a | 19.78±2.22 b | 1.27±0.04 b | |
D | 13.00±0.14 a | 1.59±0.04 b | 53.05±4.29 b | 32.30±5.65 b | 48.61±2.54 b | 5.80±0.06 a | 19.63±2.91 b | 1.21±0.04 b | |
Ⅲ | A | 11.51±0.52 b | 1.62±0.05 a | 55.97±3.09 a | 51.02±2.19 a | 58.70±1.97 a | 5.64±0.07 b | 28.97±3.40 a | 1.79±0.05 a |
B | 13.64±0.49 a | 1.51±0.06 b | 61.58±7.69 a | 38.79±5.89 b | 49.67±5.24 b | 5.80±0.09 a | 20.84±2.12 b | 1.50±0.07 b | |
C | 14.30±0.26 a | 1.50±0.05 b | 63.88±6.17 a | 37.25±6.61 b | 49.45±3.85 b | 5.81±0.07 a | 20.49±2.20 b | 1.50±0.07 b | |
D | 14.29±0.68 a | 1.51±0.04 b | 60.46±1.89 a | 36.00±5.72 b | 50.14±2.98 b | 5.83±0.07 a | 20.09±3.41 b | 1.44±0.08 b |
Table 5
Principal components from marginal regeneration samples of L. gmelinii "
主成分 principal component | 特征值 characteristic | 贡献率/% contribution rate | 累积贡献率/% cumulative contribution rate |
---|---|---|---|
1 | 5.900 | 53.635 | 53.635 |
2 | 3.435 | 31.227 | 84.862 |
3 | 0.832 | 7.567 | 92.430 |
4 | 0.572 | 5.204 | 97.634 |
5 | 0.140 | 1.269 | 98.903 |
6 | 0.082 | 0.743 | 99.646 |
7 | 0.020 | 0.185 | 99.831 |
8 | 0.011 | 0.096 | 99.927 |
9 | 0.008 | 0.071 | 99.998 |
10 | 0.000 | 0.002 | 100.000 |
11 | 0.000 | 0.000 | 100.000 |
Table 6
Principal component eigenvectors of regeneration plots of L. gmelinii forest margin "
变量 variable | 主成分 principal component | ||
---|---|---|---|
1 | 2 | 3 | |
有机质含量OM content | 0.982 | 0.122 | 0.072 |
有效磷含量AP content | 0.896 | 0.330 | -0.073 |
速效钾含量AK content | -0.593 | 0.407 | -0.084 |
铵态氮含量AN content | 0.966 | 0.174 | 0.055 |
全磷含量TP content | 0.903 | 0.370 | 0.073 |
pH | -0.731 | 0.627 | 0.010 |
含水率moisture content | -0.017 | 0.973 | -0.166 |
土壤密度soilbulk density | 0.292 | -0.945 | -0.095 |
光合有效辐射 PAR | 0.576 | -0.580 | -0.572 |
空气湿度air humidity | -0.629 | -0.640 | 0.400 |
气温air temperature | 0.827 | 0.005 | 0.532 |
Table 7
Correlation coefficient and collinearity analysis of multivariate linear regression equation in regeneration plot of L. gmelinii forest edge "
预测变量(常量) predictive variable (constant) | 系数coefficient | t | P | 共线性统计量 collinear statistics | ||
---|---|---|---|---|---|---|
回归系数 regression coefficient | 误差 error | 容差 tolerance | VIF | |||
常量constant | -0.898 | 0.075 | -12.004 | 0.000 | ||
土壤有效磷含量AP content | 0.017 | 0.001 | 15.616 | 0.000 | 0.905 | 1.104 |
土壤含水率moisture content | 0.027 | 0.005 | 6.034 | 0.000 | 0.905 | 1.104 |
[1] | 刘玉杰, 满秀玲. 修正Gash模型在兴安落叶松天然林林冠截留中的应用[J]. 南京林业大学学报(自然科学版), 2016,40(4):81-88. |
LIU Y J, MAN X L. Simulation of canopy rainfall interception of the Larix gmelinii forest by the modified Gash model in Greater Hinggan Mountains [J]. J Nanjing For Univ(Nat Sci Ed), 2016,40(4):81-88.DOI: 10.3969/j.issn.1000-2006.2016.04.013. | |
[2] | 丁宝永, 陈祥伟, 陈大我, 等. 森林边缘效应理论及其效应的初步研究[J]. 东北林业大学学报, 1990,18(S3):13-26. |
DING B Y, CHEN X W, CHEN D W, et al. A preliminary study on forest edge effect and it’s effects[J]. J Northeast For Univ, 1990,18(S3):13-26.DOI: 10.13759/j.cnki.dlxb.1990.s3.004. | |
[3] | 宋鸽, 殷有, 刘淑玲, 等. 沙地樟子松人工林的天然更新特征[J]. 江苏农业科学, 2017,45(13):120-123. |
SONG G, YIN Y, LIU S L, et al. Natural regeneration characteristics of Pinus sylvestris var. mongolica plantation in sandy land [J]. Jiangsu Agric Sci, 2017,45(13):120-123.DOI: 10.15889/j.issn.1002-1302.2017.13.033. | |
[4] | 石培礼. 亚高山林线生态交错带的植被生态学研究[D]. 北京:中国科学院, 1999. |
SHI P L. A study on the vegetation ecology of subalpine timberline ecotone[D]. Beijing: Chinese Academy of Sciences, 1999. | |
[5] | 王妍. 呼伦贝尔沙地天然樟子松林更新研究[D]. 北京: 中国林业科学研究院, 2009. |
WANG Y. Regeneration of the natural Mongolian pine forest in Hulunbuir sandland[D]. Beijing: China Academy of Forestry Sciences, 2009. | |
[6] | 王妍, 卢琦, 吴波, 等. 呼伦贝尔沙地樟子松更新苗分布特征研究[J]. 水土保持研究, 2010,17(5):86-91. |
WANG Y, LU Q, WU B, et al. Seedling dispersal pattern research of the natural Mongol Scotch pine individual plant in Hulun Buir sandland[J]. Res Soil Water Conserv, 2010,17(5):86-91. | |
[7] | 张最最. 兴安落叶松林林隙特征与更新研究[D]. 呼和浩特:内蒙古农业大学, 2011. |
ZHANG Z Z. Larix gmelinii forest gap characteristics and regeneration [D]. Hohhot: Inner Mongolia Agricultural University, 2011. | |
[8] | 郭志华, 张旭东, 黄玲玲, 等. 落叶阔叶树种蒙古栎(Quercus mongolica)对林缘不同光环境光能和水分的利用[J]. 生态学报, 2006,26(4):1047-1056. |
GUO Z H, ZHANG X D, HUANG L L, et al. Solar energy and water utilization of Quercus mongolica,a deciduous broadleaf tree,in different light regimes across the edge of a deciduous broad-leaved forest [J]. Acta Ecol Sin, 2006,26(4):1047-1056.DOI: 10.3321/j.issn:1000-0933.2006.04.010. | |
[9] | 李小梅, 张秋良. 兴安落叶松林生长季碳通量特征及其影响因素[J]. 西北农林科技大学学报(自然科学版), 2015,43(6):121-128. |
LI X M, ZHANG Q L. Carbon flux and its impact factors of Larix gmelinii forest ecosystem during growing season [J]. J Northwest A & F Univ(Nat Sci Ed), 2015,43(6):121-128.DOI: 10.13207/j.cnki.jnwafu.2015.06.010. | |
[10] | 巴特, 张健, 田原, 等. 兴安落叶松生态系统近地表CH4浓度及其影响因子[J]. 西北林学院学报, 2017,32(2):57-60,66. |
BATE, ZHANG J, TIAN Y, et al. Near-surface CH4 concentration in the Larix gmelinii ecosystem [J]. J Northwest For Univ, 2017,32(2):57-60,66.DOI: 10.3969/j.issn.1001-7461.2017.02.09. | |
[11] | 魏玉龙, 李嘉悦, 温晶, 等. 基于林缘效应对兴安落叶松天然更新及分布格局的研究[J]. 西北林学院学报, 2019,34(3):15-20. |
WEI Y L, LI J Y, WEN J, et al. Natural regeneration and distribution pattern of Larix gmelini based on forest edge effect [J]. Journal of Northwest Forestry University, 2019,34(3):15-20. 10.3969/j.issn.1001-7461.2019.03.03. | |
[12] | 贾炜玮, 解希涛, 姜生伟, 等. 大兴安岭新林林业局3种林分类型天然更新幼苗幼树的空间分布格局[J]. 应用生态学报, 2017,28(9):2813-2822. |
JIA W W, XIE X T, JIANG S W, et al. Spatial distribution pattern of seedlings and saplings of three forest types by natural regeneration in Daxin’an Mountains Xinlin Forestry Bureau,China[J]. Chin J Appl Ecol, 2017,28(9):2813-2822.DOI: 10.13287/j.1001-9332.201709.014. | |
[13] | 张鑫, 马铭鸿, 谷会岩, 等. 红松人工更新对表层土壤磷有效性及时效性的影响[J]. 东北林业大学学报, 2018,46(6):63-68. |
ZHANG X, MA M H, GU H Y, et al. Effects of artificial regeneration of Pinus koraiensis on phosphorus availability and timeliness in surface soils [J]. J Northeast For Univ, 2018,46(6):63-68.DOI: 10.3969/j.issn.1000-5382.2018.06.012. | |
[14] | 杨丽, 张秋良. 大兴安岭兴安落叶松林下植被多样性及土壤养分季节分布特征[J]. 水土保持学报, 2015,29(6):124-130. |
YANG L, ZHANG Q L. Seasonal dynamics of understory vegetation diversity and soil nutrients in Larix gmelinii forests of Great Xing’an Mountains [J]. J Soil Water Conserv, 2015,29(6):124-130.DOI: 10.13870/j.cnki.stbcxb.2015.06.023. | |
[15] | 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科学技术出版社, 1978. |
Nanjing Institute of Soil Science,Chinese Academy of Sciences. Soil physical and chemical analysis[M]. Shanghai: Shanghai Science and Technology Press, 1978. | |
[16] | 张敏. 青石冈林场木荷混交林更新演替研究[D]. 长沙:中南林业科技大学, 2013. |
ZHANG M. Study on regeneration and succession of Schima superba mixed forest on qingshigang state-owned forest farm [D]. Changsha:Central South University of Forestry & Technology, 2013. | |
[17] | 杨锡涛, 周学红, 张伟. 基于熵值法的我国野生动物资源可持续发展研究[J]. 生态学报, 2012,32(22):7230-7238. |
YANG X T, ZHOU X H, ZHANG W. Research of wildlife resources sustainable development based on entropy method in China[J]. Acta Ecol Sin, 2012,32(22):7230-7238.DOI: 10.5846/stxb201110181548. | |
[18] | 曾思齐, 甘静静, 肖化顺, 等. 木荷次生林林木更新与土壤特征的相关性[J]. 生态学报, 2014,34(15):4242-4250. |
ZENG S Q, GAN J J, XIAO H S, et al. Changes in soil properties in regenerating Schima superba secondary forests [J]. Acta Ecol Sin, 2014,34(15):4242-4250.DOI: 10.5846/stxb201312253021. | |
[19] | 李光, 吴祈宗. 基于结论一致的综合评价数据标准化研究[J]. 数学的实践与认识, 2011,41(3):72-77. |
LI G, WU Q Z. Research on data standardization in comprehensive evaluation based on consistent result[J]. Math Pract Theory, 2011,41(3):72-77. | |
[20] | 中国农业百科全书总编辑委员会. 中国农业百科全书:林业卷(下)[M]. 北京: 农业出版社, 1998. |
[21] | 喻阳华, 李飒, 严令斌, 等. 赤水河上游次生林林窗特征及森林更新[J]. 森林与环境学报, 2015,35(3):265-271. |
YU Y H, LI S, YAN L B, et al. Forest gap characteristics and forest regeneration in the upper reaches of Chishui River[J]. J For Environ, 2015,35(3):265-271.DOI: 10.13324/j.cnki.jfcf.2015.03.014. |
[1] | ZHAO Jinman, HAN Xinyue, CHENG Ruiming, ZHANG Zhidong. Health assessment of Larix gmelinii var. principis-rupprechtii and Pinus sylvestris var. mongolica plantations in Saihanba Nature Reserve [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 199-206. |
[2] | HAN Xinyu, GAO Lushuang, QIN Li, PANG Rongrong, LIU Mingqian, ZHU Yihong, TIAN Yiyu, ZHANG Jin. Effect of stand density on radial growth-climate relationship of Larix gmelinii [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 182-190. |
[3] | ZUO Zhuang, ZHANG Yun, CUI Xiaoyang. Early effects of fire on soil nitrogen content and form in Larix gmelinii forests [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 147-154. |
[4] | LU Wenyan, DONG Lingbo, TIAN Yuan, WANG Shashan, QU Xuanyi, WEI Wei, LIU Zhaogang. Modelling height-diameter curves of main species for natural forests based on species composition in Greater Khingan Mountains, northeast China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 157-165. |
[5] | HAN Shumin, YAN Wei, YANG Xuedong, HU Bo, YU Fengqiang, GAO Runhong. Potential distribution patterns and future changes of Ulmus pumila in China based on the MaxEnt model [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 103-110. |
[6] | HUANG Ziliang, XU Ziheng, SUN Caowen. Study on seasonal dynamics of seed rain and characteristics of soil seed banks in Cyclocarya paliurus [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 18-26. |
[7] | GAO Yu, LI Jing, LIU Yang, WU Yahan, GONG Jiaxing, XIN Qirui. Application of structural equation model in growth of Larix gmelinii stand [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 38-46. |
[8] | ZHANG Ruiting, YANG Jinyan, RUAN Honghua. Meta-analyses of responses of sap flow to changes in environmental factors [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 113-120. |
[9] | ZHAO Kaige, ZHOU Zhenghu, JIN Ying, WANG Chuankuan. Effects of long-term nitrogen addition on soil carbon, nitrogen, phosphorus and extracellular enzymes in Larix gmelinii and Fraxinus mandshurica plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 177-184. |
[10] | XIE Lihong, HUANG Qingyang, CAO Hongjie, YANG Fan, WANG Jifeng, NI Hongwei. Effects of climate warming on radial growth of Larix gmelinii in Wudalianchi, Heilongjiang Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 150-158. |
[11] | GONG Maojia, WANG Juan, FU Xiaoyong, KOU Weili, LU Ning, WANG Qiuhua, LAI Hongyan. Suitable regions forecasting and environmental influencing factors of Malania oleifera in Yunnan and Guangxi [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 44-52. |
[12] | WANG Junjie, JIANG Lichun. Predicting crown width for Larix gmelinii based on linear quantiles groups [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 161-170. |
[13] | WANG Bing, ZHANG Pengjie, ZHANG Qiuliang. Characteristics of the soil aggregate and its organic carbon in different Larix gmelinii forest types [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 15-24. |
[14] | XIN Shidong, HEI Pei, JIANG Lichun. Effects of different calibration positions on prediction precision of quantile taper function for Larix gmelinii [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(1): 182-188. |
[15] | HE Pei, XIA Wanqi, JIANG Lichun. Stem taper modeling equation for dahurian larch based on nonparametric regression methods [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 184-192. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||