JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (5): 67-77.doi: 10.3969/j.issn.1000-2006.201912029
Previous Articles Next Articles
CHEN Wei1(), CHENG Tielong2, JI Jing1, WU Yanyan1, XIE Tiantian1, JIANG Zeping3, SHI Shengqing1,*()
Received:
2019-12-18
Revised:
2020-06-01
Online:
2020-10-30
Published:
2020-11-19
Contact:
SHI Shengqing
E-mail:976331806@qq.com;shi.shengqing@caf.ac.cn
CLC Number:
CHEN Wei, CHENG Tielong, JI Jing, WU Yanyan, XIE Tiantian, JIANG Zeping, SHI Shengqing. Identification of three gene families in the GABA shunt and their expression analysis in poplar[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(5): 67-77.
Table 1
Primers of qRT-PCR for GABA shunt genes"
基因 genes | 基因ID gene ID | 上游引物(5'—3') primer sequence F (5' to 3') | 下游引物(5'—3') primer sequence R (5' to 3') |
---|---|---|---|
PopGAD1 | Pop_G17G072900.T1 | CCGCAGCTTCCTTCTCTTCA | ACTGTCTTGCGTGTGGTGAT |
PopGAD2 | Pop_G04G066512.T1 | AGTCCATATTTGTGCCCGCT | ACTCCGATCCATGTCGATGC |
PopGAD3 | Pop_G04G066513.T1 | GCATGGTACGGTCTCAAGCT | TACAGTGTTGCGCGTCGTTA |
PopGAD4 | Pop_G10G001568.T1 | CAAGGGTGCGGGAGAAATCT | CGCTACGTCGTTTTGGTTGG |
PopGAD5 | Pop_G08G046378.T1 | CCACAGTGCCATTCTTCCCT | AGATTTCTCCCGCACCCTTG |
PopGAD6 | Pop_G12G050713.T1 | GTGCAGGCTCCAGTTCTCTT | CTCACTTCCTAGCCGTGTCG |
PopGABA-T1 | Pop_G16G025220.T1 | GCTGGCTGGCAGAGTAATGA | GTGCACCAAAGACCAGCAAG |
PopGABA-T2 | Pop_G06G082070.T1 | CTGGCGCTATCATCTCCCAG | GCAATCGTCTCTGGTCCCTC |
PopSSADH1 | Pop_G10G047758.T1 | CTCACAAGGAAGAGCTGGGA | TCACCAAGAGTCGCTGGAAT |
PopSSADH2 | Pop_A08G063613.T1 | AGGATCAACAGCTGTGGGAA | AGCATCCTCTGAACAGCCTT |
UBQ | BU879229 | TGAGGCTTAGGGGAGGAACT | TGTAGTCGCGAGCTGTCTTG |
Table 2
Members of GABA shunt gene families in poplar"
名称 name | 基因ID gene ID | 编码区大小/bp CDS size | 氨基酸长度/aa length | 氨基酸分子质量/ku molecular weight | 等电点 pI |
---|---|---|---|---|---|
PopGAD1 | Pop_G17G072900.T1 | 1 203 | 400 | 45.37 | 5.80 |
PopGAD2 | Pop_G04G066512.T1 | 1 530 | 509 | 57.61 | 6.18 |
PopGAD3 | Pop_G04G066513.T1 | 1 446 | 481 | 54.45 | 5.84 |
PopGAD4 | Pop_G10G001568.T1 | 1 530 | 509 | 57.37 | 5.76 |
PopGAD5 | Pop_G08G046378.T1 | 1 527 | 508 | 57.34 | 6.08 |
PopGAD6 | Pop_G12G050713.T1 | 1 506 | 501 | 56.53 | 5.60 |
PopGABA-T1 | Pop_G16G025220.T1 | 1 545 | 514 | 56.52 | 6.58 |
PopGABA-T2 | Pop_G06G082070.T1 | 1 545 | 514 | 56.52 | 8.26 |
PopSSADH1 | Pop_G10G047758.T1 | 1 611 | 536 | 57.51 | 8.46 |
PopSSADH2 | Pop_A08G063613.T1 | 456 | 151 | 15.90 | 8.09 |
[1] | 施征, 史胜青, 钟传飞 , 等. γ-氨基丁酸在植物抗逆生理及调控中的作用[J]. 生命科学研究, 2007,11(S1):57-61. |
SHI Z, SHI S Q, ZHONG C F , et al. The roles of γ-aminobutyric acid on physiology and regulation under stress in plants[J]. Life Sci Res, 2007,11(S1):57-61. DOI: 10.16605/j.cnki.1007-7847.2007.s1.006. | |
[2] |
BOUCHÉ N, FROMM H . GABA in plants:Just a metabolite?[J]. Trends Plant Sci, 2004,9(3):110-115. DOI: 10.1016/j.tplants.2004.01.006.
doi: 10.1016/j.tplants.2004.01.006 pmid: 15003233 |
[3] |
SHI S Q, SHI Z, JIANG Z P , et al. Effects of exogenous GABA on gene expression of Caragana intermedia roots under NaCl stress:regulatory roles for H2O2 and ethylene production[J]. Plant Cell Environ, 2010,33(2):149-162. DOI: 10.1111/j.1365-3040.2009.02065.x.
doi: 10.1111/j.1365-3040.2009.02065.x pmid: 19895397 |
[4] | BOWN A W, SHELP B J . Plant GABA:not just a metabolite[J]. Trends Plant Sci, 2016,21(10):811-813. DOI: 10.1016/j.tplants.2016.08.001. |
[5] |
RAMESH S A, KAMRAN M, SULLIVAN W , et al. Aluminum-activated malate transporters can facilitate GABA transport[J]. Plant Cell, 2018,30(5):1147-1164. DOI: 10.1105/tpc.17.00864.
doi: 10.1105/tpc.17.00864 pmid: 29618628 |
[6] | RAMESH S A, TYERMAN S D, XU B , et al. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters[J]. Nat Commun, 6(1):7879. DOI: 10.1038/ncomms8879. |
[7] | JI J, YUE J Y, XIE T T , et al. Roles of γ-aminobutyric acid on salinity-responsive genes at transcriptomic level in poplar:involving in abscisic acid and ethylene-signalling pathways[J]. Planta, 2018,248(3):675-690. DOI: 10.1007/s00425-018-2915-9. |
[8] | 史胜青, 齐力旺, 肖文发 , 等. 外源GABA对NaCl胁迫下中间锦鸡儿幼苗乙烯生成的调控作用[J]. 林业科学, 2008,44(9):26-30. |
SHI S Q, QI L W, XIAO W F , et al. Role of γ-aminobutyric acid(GABA) on stimulating ethylene biosynjournal in Caragana intermedia seedlings under NaCl stress[J]. Sci Silvae Sin, 2008,44(9):26-30. | |
[9] |
CHE-OTHMAN M H, JACOBY R P, MILLAR A H , et al. Wheat mitochondrial respiration shifts from the tricarboxylic acid cycle to the GABA shunt under salt stress[J]. New Phytol, 2020,225(3):1166-1180. DOI: 10.1111/nph.15713.
doi: 10.1111/nph.15713 pmid: 30688365 |
[10] |
BAO H, CHEN X Y, LV S , et al. Virus-induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato by γ-aminobutyric acid metabolic pathway[J]. Plant Cell Environ, 2015,38(3):600-613. DOI: 10.1111/pce.12419.
doi: 10.1111/pce.12419 pmid: 25074245 |
[11] |
RENAULT H, EL AMRANI A, BERGER A , et al. Γ-Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots[J]. Plant Cell Environ, 2013,36(5):1009-1018. DOI: 10.1111/pce.12033.
doi: 10.1111/pce.12033 pmid: 23148892 |
[12] |
PALANIVELU R, BRASS L, EDLUND A F , et al. Pollen tube growth and guidance is regulated by POP2,an Arabidopsis gene that controls GABA levels[J]. Cell, 2003,114(1):47-59. DOI: 10.1016/S0092-8674(03)00479-3
pmid: 12859897 |
[13] |
AKAMA K, TAKAIWA F . C-terminal extension of rice glutamate decarboxylase (OsGAD2) functions as an autoinhibitory domain and overexpression of a truncated mutant results in the accumulation of extremely high levels of GABA in plant cells[J]. J Exp Bot, 2007,58(10):2699-2707. DOI: 10.1093/jxb/erm120.
doi: 10.1093/jxb/erm120 pmid: 17562689 |
[14] |
BAUM G, LEV-YADUN S, FRIDMANN Y , et al. Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants[J]. EMBO J, 1996,15(12):2988-2996. DOI: 10.1002/j.1460-2075.1996.tb00662.x.
pmid: 8670800 |
[15] |
RENAULT H, EL AMRANI A, PALANIVELU R , et al. GABA accumulation causes cell elongation defects and a decrease in expression of genes encoding secreted and cell wall-related proteins in Arabidopsis thaliana[J]. Plant Cell Physiol, 2011,52(5):894-908. DOI: 10.1093/pcp/pcr041.
doi: 10.1093/pcp/pcr041 pmid: 21471118 |
[16] |
BOUCHÉ N, FAIT A, ZIK M , et al. The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis[J]. Plant Mol Biol, 2004,55(3):315-325. DOI: 10.1007/s11103-004-0650-z.
doi: 10.1007/s11103-004-0650-z pmid: 15604684 |
[17] |
MICHAELI S, FROMM H . Closing the loop on the GABA shunt in plants:Are GABA metabolism and signaling entwined?[J]. Front Plant Sci, 2015,6:419. DOI: 10.3389/fpls.2015.00419.
doi: 10.3389/fpls.2015.00419 pmid: 26106401 |
[18] |
FAIT A, FROMM H, WALTER D , et al. Highway or byway:the metabolic role of the GABA shunt in plants[J]. Trends Plant Sci, 2008,13(1):14-19. DOI: 10.1016/j.tplants.2007.10.005.
doi: 10.1016/j.tplants.2007.10.005 pmid: 18155636 |
[19] |
CLARK S M, DI LEO R , VAN CAUWENBERGHE O R,et al.Subcellular localization and expression of multiple tomato γ-aminobutyrate transaminases that utilize both pyruvate and glyoxylate[J]. J Exp Bot, 2009,60(11):3255-3267. DOI: 10.1093/jxb/erp161.
doi: 10.1093/jxb/erp161 pmid: 19470656 |
[20] | RENAULT H, ROUSSEL V, EL AMRANI A , et al. The Arabidopsis POP2-1mutant reveals the involvement of GABA transaminase in salt stress tolerance[J]. BMC Plant Biol, 2010,10(1):1-16. DOI: 10.1186/1471-2229-10-20. |
[21] |
DELEU C, FAES P, NIOGRET M F , et al. Effects of the inhibitor of the γ-aminobutyrate-transaminase,vinyl-γ-aminobutyrate,on development and nitrogen metabolism in Brassica napus seedlings[J]. Plant Physiol Biochem, 2013,64:60-69. DOI: 10.1016/j.plaphy.2012.12.007.
doi: 10.1016/j.plaphy.2012.12.007 pmid: 23370302 |
[22] |
BOUCHE N, FAIT A, BOUCHEZ D , et al. Mitochondrial succinic-semialdehyde dehydrogenase of the-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants[J]. PNAS, 2003,100(11):6843-6848. DOI: 10.1073/pnas.1037532100.
doi: 10.1073/pnas.1037532100 pmid: 12740438 |
[23] | YUE J Y, DU C J, JI J , et al. Inhibition of α-ketoglutarate dehydrogenase activity affects adventitious root growth in poplar via changes in GABA shunt[J]. Planta, 2018,248(4):963-979. DOI: 10.1007/s00425-018-2929-3. |
[24] |
XIE T T, JI J, CHEN W , et al. GABA negatively regulates adventitious root development in poplar[J]. J Exp Bot, 2020,71(4):1459-1474. DOI: 10.1093/jxb/erz520.
doi: 10.1093/jxb/erz520 pmid: 31740934 |
[25] |
QIU D Y, BAI S L, MA J C , et al. The genome of Populus alba×Populus tremula var.glandulosa clone 84K[J]. DNA Res, 2019,26(5):423-431. DOI: 10.1093/dnares/dsz020
doi: 10.1093/dnares/dsz020 pmid: 31580414 |
[26] |
TIPPMANN H F . Analysis for free:comparing programs for sequence analysis[J]. Brief Bioinform, 2004,5(1):82-87. DOI: 10.1093/bib/5.1.82.
doi: 10.1093/bib/5.1.82 pmid: 15153308 |
[27] |
MÄSER P, THOMINE S, SCHROEDER J I , et al. Phylogenetic relationships within cation transporter families of Arabidopsis[J]. Plant Physiol, 2001,126(4):1646-1667. DOI: 10.1104/pp.126.4.1646.
doi: 10.1104/pp.126.4.1646 pmid: 11500563 |
[28] | SONNHAMMER E L L, EDDY S R, DURBIN R . Pfam:a comprehensive database of protein domain families based on seed alignments[J]. Proteins:Struct Funct Bioinform, 1997,28(3):405-420. DOI: 10.1002/(SICI)1097-0134(199707)28:3405::AID-PROT10>3.0.CO;2-L |
[29] |
GASTEIGER E . ExPASy:the proteomics server for indepth protein knowledge and analysis[J]. Nucleic Acids Res, 2003,31(13):3784-3788. DOI: 10.1093/nar/gkg563.
doi: 10.1093/nar/gkg563 pmid: 12824418 |
[30] | 任丽, 董京祥, 杨洋 , 等. 白桦BpTCP7基因启动子的克隆及表达分析[J]. 南京林业大学学报(自然科学版), 2019,43(1):32-38. |
REN L, DONG J X, YANG Y , et al. Cloning and expression analysis of BpTCP7 promoter from Betula platyphylla[J]. J Nanjing For Univ (Nat Sci Ed), 2019,43(1):32-38. | |
[31] | GOODSTEIN D M, SHU S Q, HOWSON R , et al. Phytozome:a comparative platform for green plant genomics[J]. Nucleic Acids Res, 2012,40(D1):D1178-D1186. DOI: 10.1093/nar/gkr944. |
[32] | KUMAR S, NEI M, DUDLEY J , et al. MEGA:a biologist-centric software for evolutionary analysis of DNA and protein sequences[J]. Briefings Bioinform, 2008,9(4):299-306. DOI: 10.1093/bib/bbn017. |
[33] |
YU S M, KO S S, HONG C Y , et al. Global functional analyses of rice promoters by genomics approaches[J]. Plant Mol Biol, 2007,65(4):417-425. DOI: 10.1007/s11103-007-9232-1.
doi: 10.1007/s11103-007-9232-1 pmid: 17922261 |
[34] |
SONNHAMMER E L L, KOONIN E V . Orthology,paralogy and proposed classification for paralog subtypes[J]. Trends Genet, 2002,18(12):619-620. DOI: 10.1016/S0168-9525(02)02793-2.
pmid: 12446146 |
[35] |
JI J, ZHENG L Y, YUE J Y , et al. Identification of two CiGADs from Caragana intermedia and their transcriptional responses to abiotic stresses and exogenous abscisic acid[J]. PeerJ, 2017,5:e3439. DOI: 10.7717/peerj.3439. https://www.ncbi.nlm.nih.gov/pubmed/28626614/
doi: 10.7717/peerj.3439 pmid: 28626614 |
[36] |
SCHMID M, DAVISON T S, HENZ S R , et al. A gene expression map of Arabidopsis thaliana development[J]. Nat Genet, 2005,37(5):501. DOI: 10.1038/ng1543.
pmid: 15806101 |
[37] |
LEE J H, KIM Y J, JEONG D Y , et al. Isolation and characterization of a Glutamate decarboxylase (GAD) gene and their differential expression in response to abiotic stresses from Panax ginseng C.A.Meyer[J]. Mol Biol Rep, 2010,37(7):3455-3463. DOI: 10.1007/s11033-009-9937-0.
doi: 10.1007/s11033-009-9937-0 pmid: 19967454 |
[38] | 单雪萌, 杨克彬, 史晶晶 , 等. 毛竹GeBP转录因子家族的全基因组鉴定和表达分析[J]. 南京林业大学学报(自然科学版), 2020,44(3):41-48. |
SHAN X M, YANG K B, SHI J J , et al. Genome-wide identification and expression analysis of GeBP transcription factor gene family in moso bamboo[J]. J Nanjing For Univ (Nat Sci Ed), 2020,44(3):41-48. |
[1] | MA Tan, TIAN Ye, WANG Shujun, LI Wenhao, DUAN Qiying, ZHANG Qingyuan. Sex-specific leaf physiological responses of southern-type poplar to short-term intermittent soil drought [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 172-180. |
[2] | YAN Zhengming, RUAN Honghua, LIAO Jiahui, SHI Ke, NI Juanping, CAO Guohua, SHEN Caiqin, DING Xuenong, ZHAO Xiaolong, ZHUANG Xin. Abundance and diversity of soil beetles on the forest floor in different aged poplar plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 236-242. |
[3] | LIU Yamei, LIU Shengquan, ZHOU Liang, HU Jianjun, ZHAO Zicheng, ZHENG Xiangli. Anatomical characteristics and radial variations in eight poplar clones/cultivars [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 234-240. |
[4] | ZHANG Qingyuan, TIAN Ye, WANG Miao, ZHAI Zheng, ZHOU Shichao. Phenotypic traits differentiations and classifications of the F1 hybrid progenies of Populus deltoides × P. cathayana at the seedling stage [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 40-48. |
[5] | CUI Hao, HAN Jiangang, GUO Yanhui, JI Huai, ZHU Yongli, LI Pingping. Monthly scale variation characteristics of net ecosystem exchange (NEE) in poplar plantations at the confluence of Hongze Lake and Huai River [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 19-26. |
[6] | WANG Zhanjun, WU Ziqi, WANG Zhaoxia, OU Zulan, LI Jie, CAI Qianwen, XU Zhongdong, ZHANG Zhaoliang. A comparative study of the evolution and codon usage bias in WOX gene family of three Camellia sinensis cultivars [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 71-80. |
[7] | WANG Runsong, XU Hanmei, CAO Guohua, SHEN Caiqin, RUAN Honghua. Effects of applying biogas slurry on the morphological characteristics of fine roots of poplar plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 119-124. |
[8] | WANG Lichao, CHEN Fengmao, QIU Cailou, TANG Jingen, DING Xuenong, REN Jixing. Identification and risk analyses of Euwallacea interjectus [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 201-208. |
[9] | WANG Runsong, SUN Yuan, XU Hanmei, CAO Guohua, SHEN Caiqin, RUAN Honghua. Effects of biogas slurry application on fine root biomass of poplar plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(4): 123-129. |
[10] | MA Yongchun, SHE Chengqi, FANG Shengzuo. Effects of pruning methods on growth, photosynthetic leaf area and plumpness of trunk segment in poplar plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(4): 137-142. |
[11] | HUI Hao, GUAN Qingwei, WANG Yaru, LIN Xinyu, CHEN Bin, WANG Gang, HU Yue, HU Jingdong. Effects of different forest management modes on soil nitrogen content and enzyme activity [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(4): 151-158. |
[12] | HUA Weicheng, TIAN Jiarong, SUN Xinyu, XU Yannan. Assessing the stem taper function and volume estimation of poplar (Populus) by terrestrial laser scanning [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(4): 41-48. |
[13] | ZHU Peihuang, CHEN Yu, JI Kongshu. A review of terpene synthases and genes in Pinaceae [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 233-244. |
[14] | WANG Rui, WANG Guobing, XU Jin, XU Xiao. Effects of litterfalls and earthworms on distribution of soil aggregates and carbon and nitrogen content in poplar plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 25-29. |
[15] | GE Baozhu, XU Qiang, CHEN Yingnan. The phenomenon of PCR-mediated recombination by using SUS genes of Populus davidiana×P. bolleana [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 79-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||