JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (1): 63-69.doi: 10.12302/j.issn.1000-2006.202004049
Previous Articles Next Articles
ZANG Mingyue(), LI Xuan, FANG Yanming*()
Received:
2020-04-25
Accepted:
2020-07-10
Online:
2021-01-30
Published:
2021-02-01
Contact:
FANG Yanming
E-mail:986084166@qq.com;jwu4@njfu.com.cn
CLC Number:
ZANG Mingyue, LI Xuan, FANG Yanming. Genetic diversity analysis among natural populations of Quercus fabri based on SSR markers[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(1): 63-69.
Table 1
Information about the sampled sites of Quercus fabri"
地点 locality | 种群代号 population code | 海拔/m altitude | 经度/(°) E longitude | 纬度/(°) N latitude | 样本量 trees sampled |
---|---|---|---|---|---|
安徽黄山 Huangshan Mountain, Anhui | YM | 1 864 | 118.08 | 30.10 | 30 |
浙江天目山 Tianmushan Mountain, Zhejiang | TM | 459 | 119.44 | 30.32 | 30 |
江苏紫金山 Zijin Mountain, Jiangsu | PM | 156 | 118.82 | 32.07 | 30 |
Table 2
The sequences features of six SSR primer pairs"
引物 primer | 引物序列(5'-3') primer sequence (5'-3') | 重复单位 repeat motif | 等位基因 大小/bp allele size | 退火温度/℃ annealing temperature | 标记荧光 fluorescent label | |
---|---|---|---|---|---|---|
quru-GA-0M07 | F:TTTAGCATCACATTTCCGTT | (GA)19 | 209 | 50 | 5'-FAM | |
R:TTTTGTGTCATCCGGTATTA | ||||||
MSQ16 | F:GGAACAACTAGAGAGAAC | (TC)n | 170~250 | 53 | 5'-FAM | |
R:TTGCCTATCCTGCCCCGTAT | ||||||
ssrQrZAG112 | F:TTCTTGCTTTGGTGCGCG | (GA)32 | 100 | 53 | 5'-HEX | |
R:GTGGTCAGAGACTCGGTAAGTATTC | ||||||
QM67-3M1 | F:TGGCTTATCCAATGTTTGTGATT | (GGA)3(GGC)4 | 150 | 52 | 5'-HEX | |
R:GCGTCGGTGGCGGCTTAGAGATT | (GGT)4(GGC)(GGA) | |||||
ssrQrZAG7 | F:CAACTTGGTGTTCGGATCAA | (TC)17 | 110~126 | 53 | 5'-FAM | |
R:GTGCATTTCTTTTATAGCATTCAC | ||||||
ssrQpZAG110 | F:GGAGGCTTCCTTCAACCTACT | (AG)15 | 220~250 | 51 | 5'-HEX | |
R:GATCTCTTGTGTGCTGTATTT |
Table 3
Genetic diversity of six microsatellite loci in Quercus fabri"
位点 locus | Na | Ne | Ho | He | I | Gst |
---|---|---|---|---|---|---|
quru-GA-0M07 | 15 | 9.72 | 0.63 | 0.90 | 2.46 | 0.020 |
MSQ16 | 16 | 8.46 | 0.61 | 0.87 | 2.39 | 0.044 |
ssrQrZAG112 | 9 | 2.89 | 0.78 | 0.65 | 1.43 | 0.079 |
QM67-3M1 | 8 | 3.65 | 0.76 | 0.73 | 1.57 | 0.013 |
ssrQrZAG7 | 20 | 13.83 | 0.79 | 0.93 | 2.79 | 0.010 |
ssrQpZAG110 | 7 | 4.39 | 0.62 | 0.77 | 1.65 | 0.011 |
平均mean | 12.50 | 7.16 | 0.70 | 0.80 | 2.05 | 0.030 |
[1] | DENK T, GRIMM G W, MANOS P S, et al. An updated infrageneric classification of the oaks: review of previous taxonomic schemes and synbook of evolutionary patterns[M]. Swizerland:Springer, 2017:13-38. |
[2] | 熊仕发, 吴立文, 陈益存, 等. 不同种源白栎果实形态特征和营养成分含量变异分析[J]. 林业科学研究, 2020,33(2):93-102. |
XIONG S F, WU L W, CHEN Y C, et al. Variation in morphological characters and nutrient contents of Quercus fabri fruits from different provenances[J]. Forest Research, 2020,33(2):93-102. DOI: 10.13275/j.cnki.lykxyj.2020.02.012. | |
[3] |
SUN S C, JIN D M, LI R J. Leaf emergence in relation to leaf traits in temperate woody species in east-Chinese Quercus fabri forests[J]. Acta Oecologica, 2006,30(2):212-222. DOI: 10.1016/j.actao.2006.04.001.
doi: 10.1016/j.actao.2006.04.001 |
[4] |
REN Y, CHEN S S, WEI X H, et al. Disentangling the factors that contribute to variation in forest biomass increments in the mid-subtropical forests of China[J]. J For Res, 2016,27(4):919-930. DOI: 10.1007/s11676-016-0237-y.
doi: 10.1007/s11676-016-0237-y |
[5] |
GOU M M, XIANG W H, SONG T Q, et al. Allometric equations for applying plot inventory and remote sensing data to assess coarse root biomass energy in subtropical forests[J]. Bioenergy Res, 2017,10(2):536-546. DOI: 10.1007/s12155-017-9820-0.
doi: 10.1007/s12155-017-9820-0 |
[6] |
PROVAN J, POWELL W, HOLLINGSWORTH P M. Chloroplast microsatellites: new tools for studies in plant ecology and evolution[J]. Trends Ecol Evol, 2001,16(3):142-147. DOI: 10.1016/s0169-5347(00)02097-8.
doi: 10.1016/s0169-5347(00)02097-8 pmid: 11179578 |
[7] |
ZHANG Y Y, FANG Y M, YU M K, et al. Molecular characterization and genetic structure of Quercus acutissima germplasm in China using microsatellites[J]. Mol Biol Rep, 2013,40(6):4083-4090. DOI: 10.1007/s11033-013-2486-6.
doi: 10.1007/s11033-013-2486-6 |
[8] |
DOW B D, ASHLEY M V, HOWE H F. Characterization of highly variable (GA/CT)n microsatellites in the bur oak, Quercus macrocarpa[J]. Theor Appl Genet, 1995,91(1):137-141. DOI: 10.1007/bf00220870.
doi: 10.1007/BF00220870 pmid: 24169679 |
[9] |
DOW B D, ASHLEY M V. Microsatellite analysis of seed dispersal and parentage of samplings in bur oak, Quercus macrocarpa[J]. Mol Ecol, 1996,5(5):615-627. DOI: 10.1111/j.1365-294x.1996.tb00357.x.
doi: 10.1111/j.1365-294X.1996.tb00357.x |
[10] |
ISAGI Y, SUHANDONO S. PCR primers amplifying microsatellite loci of Quercus myrsinifolia Blume and their conservation between oak species[J]. Mol Ecol, 1997,6(9):897-899. DOI: 10.1111/j.1365-294x.1997.tb00147.x.
doi: 10.1111/j.1365-294x.1997.tb00147.x pmid: 9301079 |
[11] |
ALDRICH P R, MICHLER C H, SUN W L, et al. Microsatellite markers for northern red oak (Fagaceae: Quercus rubra)[J]. Mol Ecol Notes, 2002,2(4):472-474. DOI: 10.1046/j.1471-8286.2002.00282.x.
doi: 10.1046/j.1471-8286.2002.00282.x |
[12] | ALDRICH P R, JAGTAP M, MICHLER C H, et al. Amplification of north American red oak microsatellite markers in European white oaks and Chinese chestnut[J]. Silvae Genetica, 2003,52(3/4):176-179. DOI: 10.2307/1588619. |
[13] |
STEINKELLNER H, LEXER C, TURETSCHEK E, et al. Conservation of (GA)n microsatellite loci between Quercus species[J]. Mol Ecol, 1997,6(12):1189-1194. DOI: 10.1046/j.1365-294x.1997.00288.x.
doi: 10.1046/j.1365-294X.1997.00288.x |
[14] |
KAMPFER S, LEXER C, GLÖSSL J, et al. Characterization of (GA)n microsatellite loci from Quercus robur[J]. Hereditas, 2004,129(2):183-186. DOI: 10.1111/j.1601-5223.1998.00183.x.
doi: 10.1111/j.1601-5223.1998.00183.x |
[15] | YEH F C, YANG R, BOYLE T J, et al. POPGENE 32, microsoft windows-based freeware for populations genetic analysis[M]// Molecular Biology and Biotechnology Centre. Edmonton: University of Alberta, 2000. |
[16] |
PEAKALL R, SMOUSE P E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research:an update[J]. Bioinformatics, 2012,28(19):2537-2539. DOI: 10.1093/bioinformatics/bts460.
doi: 10.1093/bioinformatics/bts460 |
[17] |
SLATKIN M, BARTON N H. A comparison of three indirect methods for estimating average levels of gene flow[J]. Evolution, 1989,43(7):1349-1368. DOI: 10.2307/2409452.
doi: 10.1111/j.1558-5646.1989.tb02587.x pmid: 28564250 |
[18] |
EXCOFFIER L, LISCHER H E L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows[J]. Mol Ecol Res, 2010,10:564-567. DOI: 10.1111/j.1755-0998.2010.02847.x.
doi: 10.1111/men.2010.10.issue-3 |
[19] | PRITCHARD J K, STEPHENS M, DONNELLY P. Inference of population structure using multilocus genotype data[J]. Genetics Society of America, 2000,155:945-959. |
[20] |
EVANNO G, REGNAUT S, GOUDET J. Detecting the number of clusters of individuals using the software structure: a simulation study[J]. Mol Ecol, 2005,14(8):2611-2620. DOI: 10.1111/j.1365-294x.2005.02553.x.
doi: 10.1111/j.1365-294X.2005.02553.x pmid: 15969739 |
[21] |
EARL D A, VONHOLDT B M. Structure harvester: a website and program for visualizing Structure output and implementing the Evanno method[J]. Conservation Genet Resour, 2012,4(2):359-361. DOI: 10.1007/s12686-011-9548-7.
doi: 10.1007/s12686-011-9548-7 |
[22] | KUMAR S, STECHER G, TAMURA K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Bio Evo, 2016,33(7):1870-1874. DOI: 10.1093/molbev/msw054. |
[23] |
RYCHLIK W, SPENCER W J, RHOADS R E. Optimization of the annealing temperature for DNA amplification in vitro[J]. Nucleic Acids Res, 1990,18(21):6409-6412. DOI: 10.1093/nar/18.21.6409
doi: 10.1093/nar/18.21.6409 pmid: 2243783 |
[24] | 魏高明. 苏皖4 种同域分布栎树的遗传变异与基因渐渗[D]. 南京: 南京林业大学, 2015. |
WEI G M. Genetic variation of populations and introgression among four sympatric oaks in Jiangsu and Anhui Provinces[D]. Nanjing: Nanjing Forestry University, 2015. | |
[25] |
ZHANG X W, LI Y, LIU C Y, et al. Phylogeography of the temperate tree species Quercus acutissima in China: inferences from chloroplast DNA variations[J]. Biochem Syst Ecol, 2015,63:190-197. DOI: 10.1016/j.bse.2015.10.010.
doi: 10.1016/j.bse.2015.10.010 |
[26] |
AN M, DENG M, ZHENG S S, et al. Introgression threatens the genetic diversity of Quercus austrocochinchinensis (Fagaceae), an endangered oak: a case inferred by molecular markers[J]. Front Plant Sci, 2017,8:229. DOI: 10.3389/fpls.2017.00229.
doi: 10.3389/fpls.2017.00229 pmid: 28270827 |
[27] |
LINDJ F, GAILING O. Genetic structure of Quercus rubra L. and Quercus ellipsoidalis E. J. Hill populations at gene-based EST-SSR and nuclear SSR markers[J]. Tree Genet Genomes, 2013,9(3):707-722. DOI: 10.1007/s11295-012-0586-4.
doi: 10.1007/s11295-012-0586-4 |
[28] | 秦英英, 韩海荣, 康峰峰, 等. 基于SSR标记的山西省辽东栎自然居群遗传多样性分析[J]. 北京林业大学学报, 2012,34(2):61-65. |
QIN Y Y, HAN H R, KANG F F, et al. Genetic diversity in natural populations of Quercus liaotungensis in Shanxi Province based on nuclear SSR markers[J]. J Beijing For Univ, 2012,34(2):61-65. DOI: 10.13332/j.1000-1522.2012.02.022. | |
[29] |
XU X L, XU L A, HUAN M R, et al. Genetic diversity of microsatellites (SSRs) of natural populations of Quercus variabilis[J]. Yi Chuan, 2004,26(5):683-688. DOI: 10.1088/1009-0630/6/5/011.
pmid: 15640085 |
[30] |
SLARKIN M. Gene flow in natural populations[J]. Annu Rev Ecol Syst, 1985,16(1):393-430. DOI: 10.1146/annurev.es.16.110185.002141.
doi: 10.1146/annurev.es.16.110185.002141 |
[31] | NEI M. Genetic distance between populations[J]. America Naturalist, 1972,106(949):10. DOI: 10.1086/282771. |
[32] |
SAITO Y, TSUDA Y, UCHIYAMA K, et al. Genetic variation in Quercus acutissima Carruth., in traditional Japanese rural forests and agricultural landscapes, revealed by chloroplast microsatellite markers[J]. Forests, 2017,8(12):451. DOI: 10.3390/f8110451.
doi: 10.3390/f8110451 |
[33] |
SHI X M, WEN Q, CAO M, et al. Genetic diversity and structure of natural Quercus variabilis population in china as revealed by microsatellites markers[J]. Forests, 2017,8(12):495. DOI: 10.3390/f8120495.
doi: 10.3390/f8120495 |
[1] | WANG Zhiyi, LI Zhenfang, PENG Chan, CHEN Ying, ZHANG Xinye. Genetic diversity analysis of Lagerstroemia indica based on fluorescent SSR markers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 61-69. |
[2] | WANG Huanli, YAN Lingjun, HUANG Xi, WANG Zhongwei, TANG Shijie. Genetic diversity and genetic structure of Tilia miqueliana population [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 145-153. |
[3] | FENG Yining, LI Yingang, QI Ming, ZHOU Pengyan, ZHOU Qi, DONG Le, XU Li’an. Genetic diversity analyses of Phoebe bournei representative populations in Fujian Province based on SSR markers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 102-108. |
[4] | LYU Feng, XIE Xiaoman, HAN Biao, LU Yizeng, WANG Lei, DONG Xin, WANG Yan, LU Lu, LIU Li, ZONG Shaoning, LI Wenqing. Genetic diversity analyses of Quercus acutissima based on SSR markers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 109-116. |
[5] | GE Dapeng, REN Yuan, ZHAO Jun, WANG Yuting, LIU Xueqing, YUAN Zhaohe. Genetic diversity among wild populations of pomegranate in Tibet by SSR analyses [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 127-133. |
[6] | HE Xudong, ZHENG Jiwei, JIAO Zhongyi, DOU Quanqin, HUANG Libin. Genetic diversity and structure analyses of Quercus shumardii populations based on SLAF-seq technology [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 81-87. |
[7] | GAO Jingbin, XU Liuyi, YE Jianren. Growth and genetic diversity analysis of clones screened by phenotypical resistant to pine wilt disease in Pinus massoniana [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 109-118. |
[8] | CHEN Xingbin, XU Haining, XIAO Fuming, SUN Shiwu, LOU Yongfeng, ZOU Yuanxi, XU Xiaoqiang. Genetic diversity and paternity analyses in a 1.5th generation seed orchard of Chenshan red-heart Chinese fir [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 87-92. |
[9] | WANG Yingying, MA Yuying, ZHANG Yong, HUANG Zheng. Biodiversity and the risk of infectious diseases [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 9-11. |
[10] | QIAO Dongya, WANG Peng, WANG Shu’an, LI Linfang, GAO Lulu, YANG Rutong, WANG Qing, LI Ya. Genetic diversity analysis of Lagerstroemia germplasm resourcesbased on SNP markers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(4): 18-25. |
[11] | SUN Yanxiao, WANG Xianrong, SUN Lei, JIA Ming. Genetic diversity analysis and fingerprint construction of fig(Ficus carica Linn.)cultivars by SSR markers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(06): 197-202. |
[12] | FENG Yuanheng, YANG Zhangqi 1*, LI Huogen 2, XU Huilan. Changes of genetic gain & genetic diversity in the breeding process of Pinus massoniana [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(05): 196-200. |
[13] | YI Xiangui, CHEN Jie, YOU Luxiang, CONG Rui, WANG Huachen,DUAN Yifan, WANG Xianrong. Genetic divetsity of Cerasus serrulata populations assessed by SSR markers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(05): 25-31. |
[14] | ZHOU Changpin, WENG Qijie, GAN Siming, JI Hongxia, CHEN Shengkan, WANG Li, LI Fagen . Application of SNaPshot to detect SNP markers in Eucalyptus [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(04): 83-88. |
[15] | RONG Hao, HUANG Bin, ZHOU Qi, ZHANG Wangxiang, XU Li'an. The construction of fingerprints and genetic diversity analysis of 61 Malus crabapple cultivars based on SSR markers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(03): 45-50. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||