Responses of soil respiration to tropical forest secondary succession in Xishuangbanna

ZHAO Shuang, WANG Shaojun, YANG Bo, ZUO Qianqian, CAO Qianbin, WANG Ping, ZHANG Lulu, ZHANG Kunfeng, FAN Yuxiang

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (2) : 12-18.

PDF(7363 KB)
PDF(7363 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (2) : 12-18. DOI: 10.12302/j.issn.1000-2006.202010044

Responses of soil respiration to tropical forest secondary succession in Xishuangbanna

Author information +
History +

Abstract

【Objective】This study aimed to examine seasonal variations in soil respiration rates during secondary tropical forest succession, which could provide a reference basis for an accurate assessment of the effects of tropical forest restoration on soil carbon and nitrogen pool changes.【Method】The LI-6400-09 respiration chamber connected to a portable infrared gas analyzer was employed for continuous observation of soil respiration rates in Mallotus paniculatus and Syzygium oblatum communities. We also assessed the effects of changes in soil microbial biomass carbon, bulk density, pH, and concentrations of carbon and nitrogen pools on soil respiration rates using the statistical methods of correlation and principal component analyses. 【Result】There were significant seasonal variations in respiration rates in the two secondary forests. Soil respiration exhibited a similar fluctuation pattern, with a single peak occurring during the wet season (June). Soil respiration rates were significantly higher in the S. oblatum community[3.80~6.19 μmol/(m2·s)]than in the M. paniculatus community[2.40~4.35 μmol/(m2·s)]. However, the variations in soil respiration rates were significantly higher in the early restoration stage (1.81 times) than in the late restoration stage(1.63 times). Soil respiration rates increased nonlinearly with seasonal variations in soil temperature and water values (P<0.01, or P<0.05). The contributions of soil temperature (49.00%~65.30%) and water content (2.96%~53.00%) to soil respiration variations were higher in the S. oblatum community than in the M. paniculatus community (6.40%~49.10%, 2.48%~43.70%). Soil respiration rates in the M. paniculatus and S. oblatum communities were positively correlated with the concentrations of the carbon pool (e.g., total organic carbon and microbial biomass carbon) and nitrogen pool (e.g., total nitrate and ammonium nitrogen)(P<0.01, or P<0.05). In contrast, there was a negative correlation with soil pH (P<0.01). Furthermore, the values of easily oxidized carbon, nitrate nitrogen, and water content contributed the most to variations in soil respiration rates, whereas the contributions of soil temperature, microbial carbon, total nitrogen, ammonium nitrogen, and hydrolyzable nitrogen to soil respiration dynamics ranked second. 【Conclusion】The secondary succession of Xishuangbanna tropical forests significantly promoted the soil respiration rates. The temporal variations in soil respiration rates were mainly controlled by the soil microclimate (e.g., water content), the concentrations of the carbon (e.g., easily oxidized carbon)and nitrogen (e.g., nitrate nitrogen) pools.

Key words

tropical forest / secondary succession / soil respiration / seasonal dynamics / soil microbial biomass carbon / carbon pool / nitrogen pool / Xishuangbanna

Cite this article

Download Citations
ZHAO Shuang , WANG Shaojun , YANG Bo , et al . Responses of soil respiration to tropical forest secondary succession in Xishuangbanna[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(2): 12-18 https://doi.org/10.12302/j.issn.1000-2006.202010044

References

[1]
赵吉霞, 王邵军, 陈奇伯, 等. 滇中高原云南松幼林和成熟林土壤呼吸及主要影响因子分析[J]. 南京林业大学学报(自然科学版), 2014, 38(3):71-76.
ZHAO J X, WANG S J, CHEN Q B, et al. Soil respiration and its affecting factors in young and mature forests of Pinus yunnanensis in middle Yunnan plateau,China[J]. J Nanjing For Univ (Nat Sci Ed), 2014, 38(3):71-76. DOI: 10.3969/j.issn.1000-2006.2014.03.014.
[2]
SUSHKO S, ANANYEVA N, IVASHCHENKO K, et al. Soil CO2 emission,microbial biomass,and microbial respiration of woody and grassy areas in Moscow(Russia)[J]. J Soils Sediments, 2019, 19(8):3217-3225. DOI: 10.1007/s11368-018-2151-8.
[3]
王红, 王邵军, 李霁航. 西双版纳高檐蒲桃群落土壤呼吸的季节动态及主要影响因子分析[J]. 中南林业科技大学学报, 2018, 38(1):111-116.
WANG H, WANG S J, LI J H. Soil respiration seasonal dynamic and main factors affecting analysis of Syzygium oblatum community in Yunnan Xishuangbanna,China[J]. J Central South Univ For Technol, 2018, 38(1):111-116. DOI: 10.14067/j.cnki.1673-923x.2018.01.019.
[4]
赵吉霞, 王邵军, 陈奇伯, 等. 滇中云南松林土壤呼吸季节动态及其影响因子研究[J]. 西北林学院学报, 2015, 30(3):8-13,20.
ZHAO J X, WANG S J, CHEN Q B, et al. Soil respiration and itsaffecting factors of Pinus yunnanensis in the middle regions of Yunnan[J]. J Northwest For Univ, 2015, 30(3):8-13,20. DOI: 10.3969/j.issn.1001-7461.2015.03.02.
[5]
DIXON R K, SOLOMON A M, BROWN S, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263(5144):185-190. DOI: 10.1126/science.263.5144.185.
[6]
ESWARAN H, VAN DEN BERG E,REICHP.Organic carbon in soils of the world[J]. Soil Sci Soc Am J, 1993, 57(1):192-194. DOI: 10.2136/sssaj1993.03615995005700010034x.
[7]
张哲, 王邵军, 李霁航, 等. 土壤易氧化有机碳对西双版纳热带森林群落演替的响应[J]. 生态学报, 2019, 39(17):6257-6263.
ZHANG Z, WANG S J, LI J H, et al. Response of soil readily oxidizablecarbon to community succession of Xishuangbanna tropical forests[J]. Acta Ecol Sin, 2019, 39(17):6257-6263. DOI: 10.5846/stxb201806021230.
[8]
张哲, 王邵军, 陈闽昆, 等. 西双版纳不同演替阶段热带森林土壤N2O排放的时间特征[J]. 生态环境学报, 2019, 28(4):702-708.
ZHANG Z, WANG S J, CHEN M K, et al. Temporal characteristics of soil N2O emission of different succession stages in Xishuangbanna tropical forests[J]. Ecol Environ Sci, 2019, 28(4):702-708. DOI: 10.16258/j.cnki.1674-5906.2019.04.008.
[9]
赵吉霞, 王邵军, 陈奇伯, 等. 滇中高原云南松天然林和人工林土壤呼吸特征的比较[J]. 中南林业科技大学学报, 2015, 35(1):96-103.
ZHAO J X, WANG S J, CHEN Q B, et al. Study on soil respiration under natural and artificial forests of Pinus yunnanensis in middle Yunnan plateau,China[J]. J Central South Univ For Technol, 2015, 35(1):96-103. DOI: 10.14067/j.cnki.1673-923x.2015.01.018.
[10]
李霁航, 王邵军, 王红, 等. 蚂蚁筑巢对高檐蒲桃热带森林群落土壤呼吸的影响[J]. 生态学报, 2018, 38(17):6033-6042.
LI J H, WANG S J, WANG H, et al. Effect of ant nesting on soil respiration in a tropical forest of Syzygium oblatum community[J]. Acta Ecol Sin, 2018, 38(17):6033-6042. DOI: 10.5846/stxb201710191883.
[11]
谢鹏宇, 刘泽鑫. 土壤水分测量原理与技术方法研究[J]. 现代农业科技, 2020(23):166-168.
XIE P Y, LIU Z X. Study on principles and technical methods of soil moisture measurement[J]. Xian Dai Agric For Sci Technol, 2020(23):166-168.
[12]
黄翔, 杜雷, 洪娟, 等. 重铬酸钾外加热法和ASI法测土壤有机质相关性研究[J]. 湖北农业科学, 2020, 59(15):122-125.
HUANG X, DU L, HONG J, et al. Study on the correlation between potassium dichromate external heating method and ASI for soil organic matter determination[J]. Hubei Agric Sci, 2020, 59(15):122-125. DOI: 10.14088/j.cnki.issn0439-8114.2020.15.024.
[13]
王瑞琨. 用电位法测定土壤pH值[J]. 山西化工, 2018, 38(3):64-65,76.
WANG R K. Determination of soil pH by potentiometry[J]. Shanxi Chem Ind 2018, 38(3):64-65,76. DOI: 10.16525/j.cnki.cn14-1109/tq.2018.03.22.
[14]
郭彬, 张黎明, 王华, 等. 两种测定土壤水解性氮的方法比较[J]. 热带农业科学, 2007, 27(2):40-43.
GUO B, ZHANG L M, WANG H, et al. Comparison of two methods for mensurating soil hydrolysis nitrogen[J]. Chinese of Trec Agric Sci, 2007, 27(2):40-43. DOI: 10.3969/j.issn.1009-2196.2007.02.011.
[15]
毛雪梅. 土壤中有效氮、磷、钾测定方法相关性研究[J]. 世界有色金属, 2020(4):160-161.
MAO X M. Correlation study on determination methods of available nitrogen,phosphorus and potassium in soil[J]. World Nonferrous Met, 2020(4):160-161.
[16]
丁英, 刘德江, 张炎. ASI法和常规分析法在新疆土壤测试中的应用[J]. 新疆农业科学, 2007, 44(6):820-823.
DING Y, LIU D J, ZHANG Y. Application of ASI and general analytical method to soil testing in Xinjiang[J]. Xinjiang Agric Sci, 2007, 44(6):820-823. DOI: 10.3969/j.issn.1001-4330.2007.06.020.
[17]
叶祥盛, 赵竹青. 流动注射法与国标法测定土壤硝态氮含量的比较[J]. 湖北农业科学, 2011, 50(4):698-699,707.
YE X S, ZHAO Z Q. Comparison between flow injection analyzer method and national standard method in determining soil nitrate-N concentration[J]. Hubei Agric Sci, 2011, 50(4):698-699,707. DOI: 10.14088/j.cnki.issn0439-8114.2011.04.014.
[18]
双龙, 妮萨娜, 杜江, 等. 重铬酸钾氧化-外加热法测定化探土壤样品中有机碳含量[J]. 安徽化工, 2016, 42(4):110-112.
SHUANG L, NI S N, DU J, et al. Determination of organic carbon in geochemical soil sample by potassium dichromate oxidation-heating method[J]. Anhui Chem Ind, 2016, 42(4):110-112. DOI: 10.3969/j.issn.1008-553X.2016.04.041.
[19]
唐燕飞, 王国兵, 阮宏华. 土壤呼吸对温度的敏感性研究综述[J]. 南京林业大学学报(自然科学版), 2008, 32(1):124-128.
TANG Y F, WANG G B, RUAN H H. A review on the sensitivity of soil respiration to temperature[J]. J Nanjing For Univ (Nat Sci Ed), 2008, 32(1):124-128. DOI: 10.3969/j.issn.1000-2006.2008.01.030.
[20]
卢华正, 沙丽清, 王君, 等. 西双版纳热带季节雨林与橡胶林土壤呼吸的季节变化[J]. 应用生态学报, 2009, 20(10):2315-2322.
LU H Z, SHA L Q, WANG J, et al. Seasonal variation of soil respiration and its components in tropical rain forest and rubber plantation in Xishuangbanna,Yunnan[J]. Chinese J Appl Ecol, 2009, 20(10):2315-2322.
[21]
高艳红, 刘立超, 贾荣亮, 等. 沙坡头人工植被演替过程的土壤呼吸特征[J]. 生态学报, 2012, 32(8):2474-2482.
GAO Y H, LIU L C, JIA R L, et al. Soil respiration patterns during restoration of vegetation in the Shapotou area,northern China[J]. Acta Ecol Sin, 2012, 32(8):2474-2482. DOI: 10.5846/stxb200908011024.
[22]
PRASAD S, BAISHYA R. Interactive effects of soil moisture and temperature on soil respiration under native and non-native tree species in semi-arid forest of Delhi,India[J]. Trop Ecol, 2019, 60(2):252-260. DOI: 10.1007/s42965-019-00028-x.
[23]
邓翠, 吕茂奎, 曾敏, 等. 红壤侵蚀区植被恢复对土壤呼吸及其温度敏感性的影响[J]. 土壤学报, 2019, 56(1):135-145.
DENG C, LYU M K, ZENG M, et al. Impacts of vegetation restoration on soil respiration and its sensitivity to temperature in eroded red soil area[J]. Acta Pedologica Sinica, 2019, 56(1):135-145. DOI: 10.11766/trxb201802020080.
[24]
GAO Q, BAI E, WANG J S, et al. Effects of litter manipulation on soil respiration under short-term nitrogen addition in a subtropical evergreen forest[J]. For Ecol Manag, 2018, 429:77-83. DOI: 10.1016/j.foreco.2018.06.037.
[25]
吕富成, 王小丹. 凋落物对土壤呼吸的贡献研究进展[J]. 土壤, 2017, 49(2):225-231.
LV F C, WANG X D. Contribution of litters to soil respiration:a review[J]. Soils, 2017, 49(2):225-231. DOI: 10.13758/j.cnki.tr.2017.02.003.
[26]
张超. 凋落物对亚热带4种森林土壤呼吸的影响[D]. 长沙: 中南林业科技大学, 2013.
ZHANG C. Effect of litter addition and exclusion on soil respiration in four forests of central South China[D]. Changsha: Central South University of Forestry & Technology, 2013.
[27]
殷士学. 土壤微生物生物量及其与养分循环关系的研究进展[J]. 土壤学进展, 1993, 21(4):1-8.
YIN S X. Advances in the study of soil microbial biomass and its relationship with nutrient cycling[J]. Progress in Soil Science, 1993, 21(4):1-8.
[28]
黎荣彬. 土壤微生物生物量碳研究进展[J]. 广东林业科技, 2008, 24(6):65-69.
LI R B. Review of research advances of soil microbial biomass carbon[J]. Guangdong For Sci Techno, 2008, 24(6):65-69. DOI: 10.3969/j.issn.1006-4427.2008.06.014.
[29]
李秀清, 李晓红. 鄱阳湖湿地不同植物群落土壤养分及微生物多样性研究[J]. 生态环境学报, 2019, 28(2):385-394.
LI X Q, LI X H. Variation of soil nutrients and microbial community diversity in the wetland of Poyang Lake[J]. Ecol Environ Sci, 2019, 28(2):385-394. DOI: 10.16258/j.cnki.1674-5906.2019.02.021.
[30]
陈盖, 许明祥, 张亚锋, 等. 黄土丘陵区不同有机碳背景下侵蚀坡面土壤呼吸特征[J]. 环境科学, 2015, 36(9):3383-3392.
CHEN G, XU M X, ZHANG Y F, et al. Characteristics of soil respiration along eroded sloping land with different SOC background on the Hilly Loess Plateau[J]. Environ Sci, 2015, 36(9):3383-3392. DOI: 10.13227/j.hjkx.2015.09.034.
PDF(7363 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/