JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (3): 120-128.doi: 10.12302/j.issn.1000-2006.202211037
Previous Articles Next Articles
HE Xiao1(), LEI Xiangdong1,*(
), DUAN Guangshuang2, FENG Qingrong3, ZHANG Yiru1, FENG Linyan1
Received:
2022-11-30
Accepted:
2022-12-29
Online:
2023-05-30
Published:
2023-05-25
Contact:
LEI Xiangdong
E-mail:hexiaonuist@163.com;xdlei@ifrit.ac.cn
CLC Number:
HE Xiao, LEI Xiangdong, DUAN Guangshuang, FENG Qingrong, ZHANG Yiru, FENG Linyan. Modelling the effects of climate change on stand biomass growth of larch plantations[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 120-128.
Table 1
Summary statistics of stand variables"
树种 tree species | 观测数 number of observations | 平均林龄/a stand mean age | 平方平均 胸径/cm quadratic mean diameter | 平均树高/m mean stand height | 林分密度指数/ (株·hm-2) stand density index | 林分蓄积/ (m3·hm-2) stand volume | 林分生物量/ (t·hm-2) stand biomass |
---|---|---|---|---|---|---|---|
华北落叶松 Larix principis-rupprechtii | 314 | 26±9 | 11.9±4.0 | 9.0±2.8 | 487±298 | 65.71±51.40 | 55.60±43.87 |
日本落叶松 L. kaempferi | 94 | 22±8 | 14.3±4.5 | 13.5±4.5 | 511±237 | 102.82±60.79 | 84.22±47.79 |
兴安落叶松 L. gmelinii | 291 | 25±8 | 11.8±3.9 | 10.8±3.5 | 428±239 | 60.19±40.77 | 58.73±38.28 |
长白落叶松 L. olgensis | 456 | 26±10 | 12.7±4.1 | 12.0±4.3 | 467±219 | 87.63±52.09 | 69.90±40.19 |
Table 3
Jackknife method statistics of optimal stand biomass growth model with climatic and dummy variables (Eq. 13)"
参数 parameter | 平均值 mean | 标准差 SD |
---|---|---|
a1 | 135.596 5 | 0.572 9 |
a12 | -23.166 7 | 0.171 6 |
a2 | 0.231 8 | 0.001 7 |
a21 | 0.075 6 | 0.000 8 |
b1 | 0.011 2 | 0.000 1 |
b2 | 3.171 8 | 0.008 3 |
c | 0.321 1 | 0.000 8 |
c1 | 0.035 4 | 0.000 2 |
c2 | -0.037 3 | 0.000 2 |
c3 | -0.006 1 | 0.000 1 |
评价指标 fitting statistics R2= 0.949 2,σ(SE)=9.52 t/hm2 |
Table 4
The relative differences of AHM, stand biomass and its annual increment in the period of 2011-2060 %"
树种 tree species | RCP 4.5 | RCP 8.5 | ||||
---|---|---|---|---|---|---|
年湿热指数 相对差值 relative difference for annual heat- moisture index | 林分生物量 相对差值 relative difference for stand biomass | 连年生长量 相对差值 relative difference for annual increment | 年湿热指数 相对差值 relative difference for annual heat- moisture index | 林分生物量 相对差值 relative difference for stand biomass | 连年生长量 相对差值 relative difference for annual increment | |
华北落叶松 L. principis-rupprechtii | -4.07±17.48 | 2.69±8.25 | 0.30±8.56 | -4.62±14.54 | 3.41±6.38 | 0.72±6.82 |
日本落叶松 L. kaempferi | -2.40±19.73 | 0.05±3.19 | -0.12±3.14 | 0.72±17.01 | -0.50±2.69 | -0.26±2.66 |
兴安落叶松 L. gmelinii | 5.51±12.34 | -3.02±3.83 | -1.92±3.99 | 9.49±10.78 | -4.72±3.61 | -2.66±3.84 |
长白落叶松 L. olgensis | 1.37±19.19 | -1.27±3.93 | -1.46±4.03 | 5.32±16.96 | -2.62±3.63 | -1.69±3.89 |
[1] | KINDERMANN G, OBERSTEINER M, SOHNGEN B, et al. Global cost estimates of reducing carbon emissions through avoided deforestation[J]. Proc Natl Acad Sci USA, 2008, 105(30):10302-10307.DOI: 10.1073/pnas.0710616105. |
[2] | PAN Y D, BIRDSEY R A, FANG J Y, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333(6045):988-993.DOI: 10.1126/science.1201609. |
[3] | 朱光玉, 胡松, 符利勇. 基于哑变量的湖南栎类天然林林分断面积生长模型[J]. 南京林业大学学报(自然科学版), 2018, 42(2):155-162. |
ZHU G Y, HU S, FU L Y. Basal area growth model for oak natural forest in Hunan Province based on dummy variable[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(2):155-162.DOI: 10.3969/j.issn.1000-2006.201704059. | |
[4] | STOKLAND J N. Volume increment and carbon dynamics in boreal forest when extending the rotation length towards biologically old stands[J]. For Ecol Manag, 2021, 488:119017.DOI: 10.1016/j.foreco.2021.119017. |
[5] | 薛春泉, 徐期瑚, 林丽平, 等. 广东主要乡土阔叶树种单木生物量生长模型[J]. 华南农业大学学报, 2019, 40(2):65-75. |
XUE C Q, XU Q H, LIN L P, et al. Biomass growth models for individual tree of main indigenous broadleaf tree species in Guangdong Province[J]. J South China Agric Univ, 2019, 40(2):65-75.DOI: 10.7671/j.issn.1001-411X.201806031. | |
[6] | 何潇, 曹磊, 徐胜林, 等. 内蒙古大兴安岭林区不同恢复阶段森林生物量特征与影响因素[J]. 北京林业大学学报, 2019, 41(9):50-58. |
HE X, CAO L, XU S L, et al. Forest biomass characteristics and influencing factors in different restoration stages in the Daxing’anling forest region of Inner Mongolia,northern China[J]. J Beijing For Univ, 2019, 41(9):50-58.DOI: 10.13332/j.1000-1522.20190030. | |
[7] | 曹磊, 刘晓彤, 李海奎, 等. 广东省常绿阔叶林生物量生长模型[J]. 林业科学研究, 2020, 33(5):61-67. |
CAO L, LIU X T, LI H K, et al. Biomass growth models for evergreen broad-leaved forests in Guangdong[J]. For Res, 2020, 33(5):61-67.DOI: 10.13275/j.cnki.lykxyj.2020.05.008. | |
[8] | 黄晓强, 信忠保, 赵云杰, 等. 林龄和立地条件对北京山区油松人工林碳储量的影响[J]. 水土保持学报, 2015, 29(6):184-190. |
HUANG X Q, XIN Z B, ZHAO Y J, et al. Effects of stand ages and site conditions on carbon stock of Pinus tabuliformis plantations in Beijing mountainous area[J]. J Soil Water Conserv, 2015, 29(6):184-190.DOI: 10.13870/j.cnki.stbcxb.2015.06.033. | |
[9] | CLARK J S, BELL D M, HERSH M H, et al. Climate change vulnerability of forest biodiversity:climate and competition tracking of demographic rates[J]. Glob Change Biol, 2011, 17(5):1834-1849.DOI: 10.1111/j.1365-2486.2010.02380.x. |
[10] | BONTEMPS J D, BOURIAUD O. Predictive approaches to forest site productivity:recent trends,challenges and future perspectives[J]. Forestry (Lond), 2014, 87(1):109-128.DOI: 10.1093/forestry/cpt034. |
[11] | ZHANG X Q, LEI Y C, PANG Y, et al. Tree mortality in response to climate change induced drought across Beijing,China[J]. Clim Change, 2014, 124(1):179-190.DOI: 10.1007/s10584-014-1089-0. |
[12] | SHARMA M, SUBEDI N, TER-MIKAELIAN M, et al. Modeling climatic effects on stand height/site index of plantation-grown jack pine and black spruce trees[J]. For Sci, 2015, 61(1):25-34.DOI: 10.5849/forsci.13-190. |
[13] | HE X, LEI X D, DONG L H. How large is the difference in large-scale forest biomass estimations based on new climate-modified stand biomass models?[J]. Ecol Indic, 2021, 126:107569.DOI: 10.1016/j.ecolind.2021.107569. |
[14] | LINDNER M, FITZGERALD J B, ZIMMERMANN N E, et al. Climate change and European forests:what do we know,what are the uncertainties,and what are the implications for forest management?[J]. J Environ Manag, 2014, 146:69-83.DOI: 10.1016/j.jenvman.2014.07.030. |
[15] | MEDLYN B E, DUURSMA R A, ZEPPEL M J B. Forest productivity under climate change:a checklist for evaluating model studies[J]. Wiley Interdiscip Rev Clim Change, 2011, 2(3):332-355.DOI: 10.1002/wcc.108. |
[16] | 国家林业和草原局. 中国森林资源报告2014-2018[M]. 北京: 中国林业出版社, 2019. |
[17] | ZANG H, LEI X D, MA W, et al. Spatial heterogeneity of climate change effects on dominant height of larch plantations in northern and northeastern China[J]. Forests, 2016, 7(12):151.DOI: 10.3390/f7070151. |
[18] | LEI X D, YU L, HONG L X. Climate-sensitive integrated stand growth model (CS-ISGM) of Changbai larch (Larix olgensis) plantations[J]. For Ecol Manag, 2016, 376:265-275.DOI: 10.1016/j.foreco.2016.06.024. |
[19] | ZENG W S, DUO H R, LEI X D, et al. Individual tree biomass equations and growth models sensitive to climate variables for Larix spp.in China[J]. Eur J Forest Res, 2017, 136(2):233-249.DOI: 10.1007/s10342-017-1024-9. |
[20] | REINEKE L H. Perfecting a stand-density index for even-aged forests[J]. Journal of Agricultural Research, 1933, 46(7): 627-638. DOI: 10.1111/j.1744-7348.1933.tb07434.x. |
[21] | ZANG H, LEI X D, ZENG W S. Height-diameter equations for larch plantations in northern and northeastern China:a comparison of the mixed-effects,quantile regression and generalized additive models[J]. Forestry, 2016, 89(4):434-445.DOI: 10.1093/forestry/cpw022. |
[22] | 国家林业局. 立木生物量模型及碳计量参数落叶松:LY/T 2654-2016[S]. 北京: 中国标准出版社, 2017. |
[23] | 陈传国, 朱俊凤. 东北主要林木生物量手册[M]. 北京: 中国林业出版社,1989. |
CHEN C G, ZHU J F. Handbook of biomass of main trees in northeast China[M]. Beijing: China Forestry Publishing House,1989. | |
[24] | WANG C K. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. For Ecol Manag, 2006, 222(1/2/3):9-16.DOI: 10.1016/j.foreco.2005.10.074. |
[25] | WANG T L, WANG G Y, INNES J L, et al. ClimateAP:an application for dynamic local downscaling of historical and future climate data in Asia Pacific[J]. Front Agr Sci Eng, 2017, 4(4):448.DOI: 10.15302/j-fase-2017172. |
[26] | 唐守正. 广西大青山马尾松全林整体生长模型及其应用[J]. 林业科学研究, 1991, 4(S): 8-13. |
TANG S Z. Integrated stand growth model and its application of masson pine in Guangxi Daqingshan[J]. Forest Research, 1994, 4(supplement): 8-13. | |
[27] | THAPA R, BURKHART H E. Modeling stand-level mortality of loblolly pine (Pinus taeda L.) using stand,climate,and soil variables[J]. For Sci, 2015, 61(5):834-846.DOI: 10.5849/forsci.14-125. |
[28] | USOLTSEV V A, MERGANICOVÁ K, KONÔPKA B, et al. Fir (Abies spp.) stand biomass additive model for Eurasia sensitive to winter temperature and annual precipitation[J]. Central Eur For J, 2019, 65(3/4):166-179.DOI: 10.2478/forj-2019-0017. |
[29] | BENNETT A C, PENMAN T D, ARNDT S K, et al. Climate more important than soils for predicting forest biomass at the continental scale[J]. Ecography, 2020, 43(11):1692-1705.DOI: 10.1111/ecog.05180. |
[30] | LATTA G, TEMESGEN H, ADAMS D, et al. Analysis of potential impacts of climate change on forests of the United States Pacific Northwest[J]. For Ecol Manag, 2010, 259(4):720-729.DOI: 10.1016/j.foreco.2009.09.003. |
[31] | TYLIANAKIS J M, DIDHAM R K, BASCOMPTE J, et al. Global change and species interactions in terrestrial ecosystems[J]. Ecol Lett, 2008, 11(12):1351-1363.DOI: 10.1111/j.1461-0248.2008.01250.x. |
[32] | KHAN D, MUNEER M A, NISA Z U, et al. Effect of climatic factors on stem biomass and carbon stock of Larix gmelinii and Betula platyphylla in Daxing’anling Mountain of Inner Mongolia,China[J]. Adv Meteorol, 2019, 2019:1-10.DOI: 10.1155/2019/5692574. |
[33] | GAO Z G, WANG Q Y, HU Z D, et al. Comparing independent climate-sensitive models of aboveground biomass and diameter growth with their compatible simultaneous model system for three larch species in China[J]. Int J Biomath, 2019, 12(7):1950053.DOI: 10.1142/s1793524519500530. |
[34] | AGUIRRE A, DEL RÍO M, RUIZ-PEINADO R, et al. Stand-level biomass models for predicting C stock for the main Spanish pine species[J]. For Ecosyst, 2021, 8(1):29.DOI: 10.1186/s40663-021-00308-w. |
[35] | XIE Y L, WANG H Y, LEI X D. Simulation of climate change and thinning effects on productivity of Larix olgensis plantations in northeast China using 3-PGmix model[J]. J Environ Manag, 2020, 261:110249.DOI: 10.1016/j.jenvman.2020.110249. |
[1] | HUANG Luyao, DU Shanfeng, JI Xiaofang, GUAN Xin, LIU Shenglong, YE Limin, JIANG Jiang. Carbon dynamic simulation based on Biome-BGC model in mixed coniferous and broadleaved forest of Fengyang Mountain, Zhejiang Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(5): 11-20. |
[2] | HE Xu, MIAO Zimei, TIAN Jiaxi, YANG Liu, ZHANG Zengxin, ZHU Bin. Temperature, precipitation and runoff prediction in the Yangtze River basin based on CMIP 6 multi-model [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 1-8. |
[3] | SHI Song, LI Wen, ZHAI Yucen, LIN Xiaopeng, DING Yishu. Spatiotemporal changes of vegetation NDVI and those reasons in northeast China Tiger and Leopard National Park [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 31-41. |
[4] | GAI Junpeng, CHEN Dongsheng, JIA Weiwei, WANG Zheng. Developing height growth model of Larix kaempferi based on genetic and climate effects [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 51-60. |
[5] | ZOU Xiaoming, WANG Guobing, GE Zhiwei, XIE Youchao, RUAN Honghua, WU Xiaoqiao, YANG Yan. Mechanisms and methods for augmenting carbon sink in forestry [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 167-176. |
[6] | WU Fan, ZHU Peihuang, JI Kongshu. Responses of masson pine(Pinus massoniana) distribution patterns to future climate change [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 196-204. |
[7] | MIAO Jing, WANG Yong, WANG Lu, XU Xiaogang. Prediction of potential geographical distribution pattern change for Castanopsis sclerophylla on MaxEnt [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 193-198. |
[8] | ZHANG Fengying, ZHANG Zengxin, TIAN Jiaxi, HUANG Richao, KONG Rui, ZHU Bin, ZHU Min, WANG Yiming, CHEN Xi. Forest NPP simulation in the Yangtze River Basin and its response to climate change [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(1): 175-181. |
[9] | ZHANG Heng, ZHANG Qiuliang, YUE Yang, SONG Ximing, DAI Haiyan, YI Bole. The impact of climate change on forest and grassland fires and future trends in Hulunbuir City, Inner Mongolia [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(5): 222-230. |
[10] | HUANG Honglan, ZHONG Wogu, YI Deping, CAI Junhuo, ZHANG Lu. Predicting the impact of future climate change on the distribution patterns of Toona ciliata var. pubescens in China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(3): 163-170. |
[11] | CHANG Juan, ZHANG Zengxin, TIAN Jiaxi, CHEN Xi, CHEN Yizhao. Spatio‑temporal characteristics of grassland water use efficiency and its response to climate change in northwest China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(3): 119-125. |
[12] | CHEN Yuheng, LÜ Yiwei, YIN Xiaojie. Predicting habitat suitability of 12 coniferous forest tree species in southwest China based on climate change [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(6): 113-120. |
[13] | QIU Siyu, CAO Yuanshuai, SUN Yujun, PAN Lei. Age-independent dominant height growth model for Chinese fir plantation [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(5): 121-127. |
[14] | JIANG Yifan,LI Mingyang,LIU Yanan,LIU Fei. Impact of climate change on suitable habitats of Pinus massoniana in Hunan Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(04): 94-100. |
[15] | YAN Boqian, LIN Wanzhong, LIU Qijing, YU Jian2 *. Response of radial growth of Larix chinensis to climatic factors in Aoshan Mountain of the Qinling Mountains, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(06): 61-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||