Construction of the stand-level biomass model of Larix olgensis plantations based on stand and topographic factors

SUN Yu, LI Fengri, XIE Longfei, DONG Lihu

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (3) : 129-136.

PDF(1846 KB)
PDF(1846 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (3) : 129-136. DOI: 10.12302/j.issn.1000-2006.202110024

Construction of the stand-level biomass model of Larix olgensis plantations based on stand and topographic factors

Author information +
History +

Abstract

【Objective】Larix olgensis is widely distributed in northeastern China and it is considered to be an important afforestation and timber species with advantages like the rapid growth and cold tolerance. To accurately estimate the biomass of larch plantations, an additive system of biomass equations for larch plantations was established. 【Method】This study investigated larch plantations using the forestry inventory data of 304 larch plantations in Heilongjiang Province. An additive system of biomass equations was established using the method of non-linear and seemingly uncorrelated regression and employed a leave-one-out cross method for the model validation. 【Result】The stand basal area and stand mean tree height had a significant effect on the stem, branch, foliage and root biomass, the stand age and elevation also significantly affect the stem, foliage and root biomass. The branch rate and aspect had a significant effect on branch biomass. Foliage biomass was negatively correlated with stand mean tree height, stand age and elevation, whereas stem and root biomasses were positively correlated with the explanatory variables, and branch biomass was positively correlated with stand mean tree height. In terms of the additive system of the biomass equation, the adjusted coefficients of determination ( R a d j 2) were greater than 0.94, and the root mean square error (RMSE) was small. The average bias (MPE) and average bias percentage (MPE%) were both close to 0, the fit indices were all greater than 0.93, the average absolute bias (MAE) was small, and the average absolute bias percentage (MAE%) was less than 11%. 【Conclusion】The additive biomass model of larch plantations established in this study is effective for fitting and prediction, and can be used to predict the stand-level biomass of larch plantations in Heilongjiang Province.

Key words

larch (Larix olgensis) plantation / stand-level biomass / topographic factor / seemingly uncorrelated regression / regression heteroscedasticity / additive equation

Cite this article

Download Citations
SUN Yu , LI Fengri , XIE Longfei , et al. Construction of the stand-level biomass model of Larix olgensis plantations based on stand and topographic factors[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(3): 129-136 https://doi.org/10.12302/j.issn.1000-2006.202110024

References

[1]
罗云建, 张小全, 王效科, 等. 森林生物量的估算方法及其研究进展[J]. 林业科学, 2009, 45(8): 129-134.
LUO Y J, ZHANG X Q, WANG X K, et al. Forest biomass estimation methods and their prospects[J]. Sci Silvae Sin, 2009, 45(8): 129-134. DOI: 10.3321/j.issn1001-7488.2009.08.023.
[2]
董利虎. 东北林区主要树种及林分类型生物量模型研究[D]. 哈尔滨: 东北林业大学, 2015.
DONG L H. Developing individual and stand-level biomass equations in northeast China forest area[D]. Harbin: Northeast Forestry University, 2015.
[3]
王效科, 冯宗炜, 欧阳志云. 中国森林生态系统的植物碳储量和碳密度研究[J]. 应用生态学报, 2001, 12(1): 13-16.
WANG X K, FENG Z W, OUYANG Z Y. Vegetation carbon storage and density of forest ecosystems in China[J]. Chin J Appl Ecol, 2001, 12(1): 13-16.
[4]
浮媛媛. 中国东北林区主要树种地上生物量与密度的遥感估算与模拟研究[D]. 长春: 东北师范大学, 2020.
FU Y Y. Remote sensing estimation and simulation of major tree species aboveground biomass and density in the forest region of northeast China[D]. Changchun: Northeast Normal University, 2020.
[5]
欧光龙, 胥辉, 王俊峰, 等. 思茅松天然林林分生物量混合效应模型构建[J]. 北京林业大学学报, 2015, 37(3): 101-110.
OU G L, XU H, WANG J F, et al. Building mixed effect models of stand biomass for Simao pine (Pinus kesiya var. langbianensis) natural forest[J]. J Beijing For Univ, 2015, 37(3): 101-110. DOI: 10.13332/j.1000-1522.20140316.
[6]
赵嘉诚, 李海奎. 杉木单木和林分水平地下生物量模型的构建[J]. 林业科学, 2018, 54(2): 81-89.
ZHAO J C, LI H K. Establishment of below-ground biomass equations for Chinese fir at tree and stand level[J]. Sci Silvae Sin, 2018, 54(2): 81-89. DOI: 10.11707/j.1001-7488.20180209.
[7]
董利虎, 李凤日. 大兴安岭东部天然落叶松林可加性林分生物量估算模型[J]. 林业科学, 2016, 52(7): 13-21.
DONG L H, LI F R. Additive stand-level biomass models for natural larch forest in the east of Daxing’ an Mountains[J]. Sci Silvae Sin, 2016, 52(7): 13-21. DOI: 10.11707/j.1001-7488.20160702.
[8]
巨文珍, 农胜奇. 森林生物量研究进展[J]. 西南林业大学学报, 2011, 31(2): 78-83, 89.
JU W Z, NONG S Q. Research advances in forest biomass[J]. J Southwest For Univ, 2011, 31(2): 78-83, 89. DOI: 10.3969/j.issn.1003-7179.2011.02.018.
[9]
黄明泉. 典型地段思茅松天然林生物量分配的比较分析及环境解释[D]. 昆明: 西南林业大学, 2018.
HUANG M Q. Comparative analysis and environmental interpretation of the biomass distribution of Simao pine natural forest in typical section[D]. Kunming: Southwest Forestry University, 2018.
[10]
DONG L H, WIDAGDO F R A, XIE L F, et al. Biomass and volume modeling along with carbon concentration variations of short-rotation poplar plantations[J]. Forests, 2020, 11(7):780. DOI: 10.3390/f11070780.
[11]
CASTEDO-DORADO F, GÓMEZ-GARCÍA E, DIÉGUEZ-ARANDA U, et al. Aboveground stand-level biomass estimation: a comparison of two methods for major forest species in northwest Spain[J]. Ann For Sci, 2012, 69(6): 735-746. DOI: 10.1007/s13595-012-0191-6.
[12]
PARRESOL B R. Assessing tree and stand biomass: a review with examples and critical comparisons[J]. For Sci, 1999, 45(4): 573-593. DOI: 10.1093/forestscience/45.4.573.
[13]
PARRESOL B R. Additivity of nonlinear biomass equations[J]. Can J For Res, 2001, 31(5): 865-878. DOI: 10.1139/x00-202.
[14]
DONG L H, ZHANG L J, LI F R. A three-step proportional weighting system of nonlinear biomass equations[J]. For Sci, 2015, 61(1): 35-45. DOI: 10.5849/forsci.13-193.
[15]
董利虎, 李凤日, 贾炜玮. 黑龙江省红松人工林立木生物量估算模型的研建[J]. 北京林业大学学报, 2012, 34(6): 16-22.
DONG L H, LI F R, JIA W W. Development of tree biomass model for Pinus koraiensis plantation[J]. J Beijing For Univ, 2012, 34(6): 16-22. DOI: 10.13332/j.1000-1522.2012.06.016.
[16]
ZHAO D H, WESTFALL J, COULSTON J W, et al. Additive biomass equations for slash pine trees: comparing three modeling approaches[J]. Can J For Res, 2019, 49(1): 27-40. DOI: 10.1139/cjfr-2018-0246.
[17]
董利虎, 李凤日. 三种林分生物量估算方法的比较[J]. 应用生态学报, 2016, 27(12): 3862-3870.
DONG L H, LI F R. Comparision of three stand-level biomass estimation methods[J]. Chin J Appl Ecol, 2016, 27(12): 3862-3870. DOI: 10.13287/j.1001-9332.201612.030.
[18]
刘强. 人工长白落叶松光合特性的研究[D]. 哈尔滨: 东北林业大学, 2015.
LIU Q. Study on photosynthetic characteristics of Larix olgensis henry plantation[D]. Harbin: Northeast Forestry University, 2015.
[19]
王鹤智. 东北林区林分生长动态模拟系统的研究[D]. 哈尔滨: 东北林业大学, 2012.
WANG H Z. Dynamic simulating system for stand growth of forests in northeast China[D]. Harbin: Northeast Forestry University, 2012.
[20]
TROFYMOW J A, COOPS N C, HAYHURST D. Comparison of remote sensing and ground-based methods for determining residue burn pile wood volumes and biomass[J]. Can J For Res, 2014, 44(3): 182-194. DOI: 10.1139/cjfr-2013-0281.
[21]
申屠惠良. 使用怀特检验判断生物量模型的异方差性[J]. 浙江林业科技, 2012, 32(3): 43-45.
SHENTU H L. White test for heteroskedasticity of biomass model[J]. J Zhejiang For Sci Technol, 2012, 32(3): 43-45. DOI: 10.3969/j.issn.1001-3776.2012.03.009.
[22]
曾伟生, 唐守正. 非线性模型对数回归的偏差校正及与加权回归的对比分析[J]. 林业科学研究, 2011, 24(2): 137-143.
ZENG W S, TANG S Z. Bias correction in logarithmic regression and comparison with weighted regression for non-linear models[J]. For Res, 2011, 24(2): 137-143. DOI: 10.13275/j.cnki.lykxyj.2011.02.011.
[23]
光增云. 河南森林生物量与生产力研究[J]. 河南农业大学学报, 2006, 40(5): 493-497.
GUANG Z Y. Study on forest biomass and productivity in Henan[J]. J Henan Agric Univ, 2006, 40(5): 493-497. DOI:10.16445/j.cnki.1000-2340.2006.05.010.
[24]
BI H Q, LONG Y S, TURNER J, et al. Additive prediction of aboveground biomass for Pinus radiata (D. Don) plantations[J]. For Ecol Manag, 2010, 259(12): 2301-2314. DOI: 10.1016/j.foreco.2010.03.003.
[25]
HE X, LEI X D, DONG L H. How large is the difference in large-scale forest biomass estimations based on new climate-modified stand biomass models?[J]. Ecol Indic, 2021, 126: 107569. DOI: 10.1016/j.ecolind.2021.107569.
[26]
肖兴威. 中国森林生物量与生产力的研究[D]. 哈尔滨: 东北林业大学, 2005.
XIAO X W. Study on forest biomass and productivity in China[D]. Harbin: Northeast Forestry University, 2005.
PDF(1846 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/