JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (1): 205-213.doi: 10.12302/j.issn.1000-2006.202202018
Previous Articles Next Articles
Received:
2022-02-21
Revised:
2023-06-02
Online:
2024-01-30
Published:
2024-01-24
CLC Number:
LI Qiujie, LI Xiangcheng. Pointwise detection of street tree crown point clouds based on mobile laser scanning[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 205-213.
Table 3
Comparison of neighborhood search time"
δ/m | 搜索时间/s search time | |
---|---|---|
本研究方法 proposed method | k-D树 k-D tree | |
0.1 | 36.09 | 408.98 |
0.2 | 63.46 | 689.03 |
0.3 | 103.39 | 1 073.92 |
0.4 | 148.79 | 1 407.73 |
0.5 | 202.82 | 1 924.96 |
0.6 | 266.55 | 2 210.29 |
0.7 | 341.11 | 2 954.06 |
0.8 | 428.32 | 3 475.83 |
0.9 | 500.04 | 4 362.24 |
1.0 | 569.89 | 5 902.45 |
平均average | 266.05 | 2 440.95 |
Table 5
Comparison of supervised learning algorithms"
监督学习 算法 supervised learning algorithm | 算法超参数 algorithm hyperparameter | 训练集 training set | 测试集 test set | ||||||
---|---|---|---|---|---|---|---|---|---|
训练时间/s training time | 查准率/% precision | 查全率/% recall | F1分数/% F1 score | 检测时间/s detection time | 查准率/% precision | 查全率/% recall | F1分数/% F1 score | ||
神经网络 NN | hiddenSizes为10 | 28.69 | 99.90 | 99.94 | 99.92 | 1.04 | 98.46 | 98.62 | 98.54 |
支技向量机 SVM | 线性核 | 2.38 | 87.91 | 83.52 | 85.66 | 0.23 | 92.05 | 82.89 | 87.23 |
Boosting | NLearn为350 | 138.61 | 100.00 | 100.00 | 100.00 | 95.45 | 99.06 | 98.89 | 98.97 |
随机森林 RF | NumTrees为10 | 12.56 | 100.00 | 100.00 | 100.00 | 8.05 | 99.28 | 99.28 | 99.28 |
Table 6
Comparison of local features of point clouds"
特征类别 feature type | 特征 feature | 训练集training set | 测试集test set | ||||
---|---|---|---|---|---|---|---|
查准率/% precision | 查全率/% recall | F1分数/% F1 score | 查准率/% precision | 查全率/% recall | F1分数/% F1 score | ||
单类 特征 single feature | 宽度 width | 97.70 | 92.76 | 95.17 | 64.01 | 46.15 | 53.63 |
深度 depth | 99.86 | 99.61 | 99.73 | 89.78 | 72.76 | 80.38 | |
高度 height | 99.75 | 98.91 | 99.33 | 84.52 | 77.87 | 81.06 | |
维度 dimension | 99.17 | 96.75 | 97.95 | 77.88 | 63.60 | 70.02 | |
密度 density | 78.01 | 52.80 | 62.98 | 65.51 | 41.15 | 50.55 | |
次数 number | 97.37 | 89.46 | 93.25 | 83.79 | 73.02 | 78.04 | |
强度 intensity | 99.93 | 99.85 | 99.89 | 78.48 | 84.69 | 81.47 | |
组合 特征 combined feature | 宽度+深度+高度 width+depth+height | 100.00 | 100.00 | 100.00 | 99.14 | 99.00 | 99.07 |
宽度+深度+高度+维度 width+depth+height+dimension | 100.00 | 100.00 | 100.00 | 99.14 | 99.14 | 99.14 | |
宽度+深度+高度+维度+密度 width+depth+height+dimension+density | 100.00 | 100.00 | 100.00 | 99.11 | 99.11 | 99.11 | |
宽度+深度+高度+维度+密度+次数 width+depth+height+dimension+density+number | 100.00 | 100.00 | 100.00 | 99.25 | 99.25 | 99.25 | |
宽度+深度+高度+维度+密度+次数+强度 width+depth+height+dimension+density+number+intensity | 100.00 | 100.00 | 100.00 | 99.28 | 99.28 | 99.28 |
Table 7
Comparison of crown pointwise detectors"
方法 method | δ/m | 训练集 training set | 测试集 test set | ||||||
---|---|---|---|---|---|---|---|---|---|
训练时间/s training time | 查准率/% precision | 查全率/% recall | F1分数/% F1 score | 平均每帧 检测时间/ms average detection time per frame | 查准率/% precision | 查全率/% recall | F1分数/% F1 score | ||
本研究方法 proposed method | 0.1 | 57.71 | 99.98 | 99.99 | 99.98 | 22.58 | 98.85 | 98.20 | 98.52 |
0.2 | 69.20 | 100.00 | 100.00 | 100.00 | 28.91 | 98.98 | 98.80 | 98.89 | |
0.3 | 88.79 | 100.00 | 100.00 | 100.00 | 39.56 | 99.13 | 98.68 | 98.90 | |
0.4 | 130.62 | 100.00 | 100.00 | 100.00 | 62.74 | 99.16 | 98.72 | 98.94 | |
0.5 | 192.82 | 100.00 | 100.00 | 100.00 | 96.19 | 99.23 | 98.70 | 98.96 | |
0.6 | 247.38 | 100.00 | 100.00 | 100.00 | 125.53 | 99.24 | 98.48 | 98.86 | |
0.7 | 314.85 | 100.00 | 100.00 | 100.00 | 162.10 | 99.24 | 98.00 | 98.62 | |
0.8 | 407.73 | 100.00 | 100.00 | 100.00 | 211.22 | 99.22 | 98.33 | 98.77 | |
0.9 | 466.39 | 100.00 | 100.00 | 100.00 | 243.49 | 99.18 | 97.42 | 98.29 | |
1.0 | 521.49 | 100.00 | 100.00 | 100.00 | 273.60 | 99.19 | 96.33 | 97.74 | |
k-D树 k-D tree | 1 136.03 | 100.00 | 100.00 | 100.00 | 1 609.68 | 94.28 | 88.14 | 91.11 |
[1] | 袁琨, 郭佳, 陆哲明, 等. 篱垣型垂直绿化的减噪能力及其影响因素[J]. 中国城市林业, 2021, 19(4):67-71. |
YUAN K, GUO J, LU Z M, et al. Noise reduction ability of vertical greening of hedgerow and its influencing factors[J]. J Chin Urban For, 2021, 19(4):67-71.DOI: 10.12169/zgcsly.2020.09.10.0001. | |
[2] | 李苹苹, 苗纯萍, 陈玮, 等. 城市街谷行道树对PM2.5浓度影响的数值模拟研究[J]. 生态学杂志, 2021, 40(12):4044-4052. |
LI P P, MIAO C P, CHEN W, et al. Numerical simulation on the effects of street trees on PM2.5 concentration in street canyon[J]. Chin J Ecol, 2021, 40(12):4044-4052.DOI: 10.13292/j.1000-4890.202111.036. | |
[3] | 蒋应红. 国内外城市行道树综述[J]. 中国市政工程, 2020(6):4-6,109. |
JIANG Y H. A summary of urban street trees at home & abroad[J]. China Munic Eng, 2020(6):4-6, 109.DOI: 10.3969/j.issn.1004-4655.2020.06.002. | |
[4] | 王伟. 行道树栽植养护技术[J]. 河南农业, 2019(35):33,35. |
WANG W. Planting and maintenance technology of street trees[J]. Agric Henan, 2019(35): 33,35.DOI: 10.15904/j.cnki.hnny.2019.35.017. | |
[5] | 商艳上, 苏田, 李臻, 等. 园林行道树复壮技术[J]. 现代农业科技, 2021(12):176-177. |
SHANG Y S, SU T, LI Z, et al. Rejuvenation technology of garden street trees[J]. Modern Agricultural Science and Technology, 2021(12):176-177.DOI: 10.3969/j.issn.1007-5739.2021.12.071. | |
[6] | 李秋洁, 童岳凯, 薛玉玺, 等. 基于YOLACT的行道树靶标点云分割方法[J]. 林业工程学报, 2022, 7(4):144-150. |
LI Q J, TONG Y K, XUE Y X, et al. Point cloud segment method for street tree target based on YOLACT[J]. J Fore Eng, 2022, 7(4):144-150.DOI:10.13360/j.issn.2096-1359.202110034. | |
[7] | 白秋薇, 张信, 罗红品, 等. 设施果园自动对靶精准变量施肥控制系统[J]. 农业工程学报, 2021, 37(12):28-35. |
BAI Q W, ZHANG X, LUO H P, et al. Control system for auto-targeting precision variable-rate fertilization of fruit trees in a greenhouse orchard[J]. Trans Chin Soc Agric Eng, 2021, 37(12):28-35.DOI: 10.11975/j.issn.1002-6819.2021.12.004http://www.tc. | |
[8] | 郑加强, 徐幼林. 环境友好型农药喷施机械研究进展与展望[J]. 农业机械学报, 2021, 52(3):1-16. |
ZHENG J Q, XU Y L. Development and prospect in environment-friendly pesticide sprayers[J]. Trans Chin Soc Agric Mach, 2021, 52(3):1-16.DOI: 10.6041/j.issn.1000-1298.2021.03.001. | |
[9] | 焦祥, 张慧春, 郑加强, 等. 基于农林植物表型的智能喷雾机械研究进展[J]. 世界林业研究, 2020, 33(5):42-46. |
JIAO X, ZHANG H C, ZHENG J Q, et al. Research progress in intelligent sprayers based on phenotype of agricultural and forestry plants[J]. World For Res, 2020, 33(5):42-46.DOI: 10.13348/j.cnki.sjlyyj.2020.0021.y. | |
[10] | 袁鹏成, 李秋洁, 邓贤, 等. 基于LiDAR的对靶喷雾实时控制系统设计与试验[J]. 农业机械学报, 2020, 51(S1):273-280. |
YUAN P C, LI Q J, DENG X, et al. Design and experiment of real-time control system for target spraying based on LiDAR[J]. Trans Chin Soc Agric Mach, 2020, 51(S1):273-280. | |
[11] | SULTAN M M, ZAHID A, HE L, et al. Development of a LiDAR-guided section-based tree canopy density measurement system for precision spray applications[J]. Comput Electron Agric, 2021, 182:106053.DOI: 10.1016/j.compag.2021.106053. |
[12] | CHEN L M, ZHU H P, HORST L, et al. Management of pest insects and plant diseases in fruit and nursery production with laser-guided variable-rate sprayers[J]. Hort Science, 2021, 56(1):94-100.DOI: 10.21273/hortsci15491-20. |
[13] | SAFAIE A H, RASTIVEIS H, SHAMS A, et al. Automated street tree inventory using mobile LiDAR point clouds based on Hough transform and active contours[J]. ISPRS J Photogramm Remote Sens, 2021, 174:19-34.DOI: 10.1016/j.isprsjprs.2021.01.026. |
[14] | BIENERT A, GEORGI L, KUNZ M, et al. Automatic extraction and measurement of individual trees from mobile laser scanning point clouds of forests[J]. Ann Bot, 2021, 128(6):787-804.DOI: 10.1093/aob/mcab087. |
[15] | XU S, SUN X Y, YUN J Y, et al. A new clustering-based framework to the stem estimation and growth fitting of street trees from mobile laser scanning data[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 2020, 13:3240-3250.DOI: 10.1109/JSTARS.2020.3001978. |
[16] | 陆清屿, 李秋洁, 童岳凯, 等. 基于Mask R-CNN的行道树实例分割方法[J]. 林业工程学报, 2021, 6(5):154-160. |
LU Q Y, LI Q J, TONG Y K, et al. Instance segmentation method of street trees based on Mask R-CNN[J]. J Fore Eng, 2021, 6(5):154-160.DOI:10.13360/j.issn.2096-1359.202010011. | |
[17] | WEINMANN M, WEINMANN M, MALLET C, et al. A classification-segmentation framework for the detection of individual trees in dense MMS point cloud data acquired in urban areas[J]. Remote Sens, 2017, 9(3):277.DOI: 10.3390/rs9030277. |
[18] | WEINMANN M, HINZ S, WEINMANN M. A hybrid semantic point cloud classification-segmentation framework based on geometric features and semantic rules[J]. PFG, 2017, 85(3):183-194.DOI: 10.1007/s41064-017-0020-5. |
[19] | HACKEL T, WEGNER J D, SCHINDLER K. Fast semantic segmentation of 3D point clouds with strongly varying density[J]. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci, 2016, III-3:177-184.DOI: 10.5194/isprsannals-iii-3-177-2016. |
[20] | LANDRIEU L, RAGUET H, VALLET B, et al. A structured regularization framework for spatially smoothing semantic labelings of 3D point clouds[J]. ISPRS J Photogramm Remote Sens, 2017, 132:102-118.DOI: 10.1016/j.isprsjprs.2017.08.010. |
[21] | PUENTE I, GONZÁLEZ-JORGE H, ARIAS P, et al. Land-based mobile laser scanning systems:a review[C]// The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 2011. DOI: 10.5194/isprsarchives-xxxviii-5-w12-163-2011. |
[22] | WANG C, WEN C L, DAI Y D, et al. Urban 3D modeling with mobile laser scanning:a review[J]. Virtual Real Intell Hardw, 2020, 2(3):175-212.DOI: 10.1016/j.vrih.2020.05.003. |
[23] | 李天, 何雄奎, 王志翀, 等. 基于LiDAR技术的喷雾量三维空间分布测试方法[J]. 农业工程学报, 2021, 37(6):42-49. |
LI T, HE X K, WANG Z C, et al. Method for measuring the 3D spatial distribution of spray volume based on LiDAR[J]. Trans Chin Soc Agric Eng, 2021, 37(6):42-49.DOI: 10.11975/j.issn.1002-6819.2021.06.006. | |
[24] | MADER D, WESTFELD P, MAAS H G. An integrated flexible self-calibration approach for 2D laser scanning range finders applied to the hokuyo UTM-30LX-EW[C]// The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2014.DOI: 10.5194/isprsarchives-xl-5-385-2014. |
[25] | WEINMANN M, URBAN S, HINZ S, et al. Distinctive 2D and 3D features for automated large-scale scene analysis in urban areas[J]. Comput Graph, 2015, 49:47-57.DOI: 10.1016/j.cag.2015.01.006. |
[26] | DEMANTKÉ J, MALLET C, DAVID N, et al. Dimensionality based scale selection in 3D lidar point clouds[C]// The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 2011.DOI: 10.5194/isprsarchives-xxxviii-5-w12-97-2011. |
[27] | 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016. |
ZHOU Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016. |
[1] | HE Kun, WANG Junjie, WANG Benyao, ZHU Haijun, FENG Shucheng. Soil fertility spatial distribution and characteristics of roadside trees in Shanghai [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 164-172. |
[2] | YAN Wei1, 3, YANG Ruiqing, HU Yonghong2, 3*. Effects of different planting matrices on the root growth of four roadside trees in Shanghai [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(04): 192-198. |
[3] | XIONG Jinxin, QI Huijun, WANG Qianru, WANG Qianru, WANG Shaohua, ZUO Wentao, SUN Yuan. Assessment of ecological benefit of street trees in urban community based on i-Tree model [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(02): 128-136. |
[4] | QIAN Nen-zhi, XUE Jian-hui*, WU Yong-bo, REN Yin. The Analysis of the Characters of Street Tree Structure in Urban Area of Zunyi City [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2005, 29(04): 113-116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||