Temperature, precipitation and runoff prediction in the Yangtze River basin based on CMIP 6 multi-model

HE Xu, MIAO Zimei, TIAN Jiaxi, YANG Liu, ZHANG Zengxin, ZHU Bin

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (2) : 1-8.

PDF(2585 KB)
PDF(2585 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (2) : 1-8. DOI: 10.12302/j.issn.1000-2006.202203028

Temperature, precipitation and runoff prediction in the Yangtze River basin based on CMIP 6 multi-model

Author information +
History +

Abstract

【Objective】 This research aims to explore the impact of future climate change on predicted runoff trends in the Yangtze River basin and provide a basis for early flood warning and prevention measures in the Yangtze River basin and other regions. 【Method】 Temperature, precipitation and runoff in the Yangtze River basin from 1961 to 2014 were evaluated by using the multi-mode set average (MME) of the international coupled model intercomparison project phase 6 (CMIP 6) and the SWAT hydrological model and predicted under SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 emission scenarios from 2020 to 2099.【Result】 (1) Compared with the single model, MME showed better performance in simulating temperature and precipitation during historical periods, with a correlation coefficient with the observation value was >0.90. Further, MME simulated the spatial distribution of temperature and precipitation well. (2) The MME analysis showed that during 2020 and 2099, temperature and precipitation increases in the Yangtze River basin under all scenarios were <50% and <20%, respectively. Simulated temperature under the SSP5-8.5 scenario was 1.23 ℃ higher than that under the SSP1-1.9 scenario, and 0.99 ℃ higher than that under the SSP1-2.6 scenario. (3) Overall, future annual runoff of the entire Yangtze River basin increased significantly and reached 40 380 m3/s under the SSP5-5.8 scenario at the end of the 21st century.【Conclusion】 Temperature, precipitation and runoff in the Yangtze River basin are predicted to increase in the future, whereas flood disasters under low emission scenarios are relatively less likely.

Key words

Yangtze River basin / climate change / coupled model intercomparison project phase 6(CMIP 6) / ensemble estimation / runoff simulation

Cite this article

Download Citations
HE Xu , MIAO Zimei , TIAN Jiaxi , et al . Temperature, precipitation and runoff prediction in the Yangtze River basin based on CMIP 6 multi-model[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(2): 1-8 https://doi.org/10.12302/j.issn.1000-2006.202203028

References

[1]
MOLINI A, KATUL G G, PORPORATO A. Maximum discharge from snowmelt in a changing climate[J]. Geophysical Research, 2011, 38(5):387-404.DOI:10.1029/2010gl046477.
[2]
徐宗学, 李景玉. 水文科学研究进展的回顾与展望[J]. 水科学进展, 2010, 21(4):450-459.
XU Z X, LI J Y. Progress in hydrological sciences:past,present and future[J]. Adv Water Sci, 2010, 21(4):450-459.DOI:10.14042/j.cnki.32.1309.2010.04.003.
[3]
周砺, 刘金平, 陈丽芳, 等. 当前国际水文学科技术领域的研究方向[J]. 水文, 2005, 25(4):30-32,59.
ZHOU L, LIU J P, CHEN L F, et al. Current research trend in the international technology field of hydrology[J]. Hydrology, 2005, 25(4):30-32,59.
[4]
姜彤, 苏布达, 王艳君, 等. 四十年来长江流域气温、降水与径流变化趋势[J]. 气候变化研究进展, 2005, 1(2):65-68.
JIANG T, SU B D, WANG Y J, et al. Trends of temperature,precipitation and runoff in the Yangtze River basin from 1961 to 2000[J]. Adv Clim Change Res, 2005, 1(2):65-68.
[5]
向竣文, 张利平, 邓瑶, 等. 基于CMIP 6的中国主要地区极端气温/降水模拟能力评估及未来情景预估[J]. 武汉大学学报(工学版), 2021, 54(1):46-57,81.
XIANG J W, ZHANG L P, DENG Y, et al. Projection and evaluation of extreme temperature and precipitation in major regions of China by CMIP6 models[J]. Eng J Wuhan Univ, 2021, 54(1):46-57,81.DOI:10.14188/j.1671-8844.2021-01-007.
[6]
李佳瑞, 牛自耕, 冯岚, 等. CMIP 5模式对长江和黄河流域极端气温指标的模拟与预估[J]. 地球科学, 2020, 45(6):1887-1904.
LI J R, NIU Z G, FENG L, et al. Simulation and prediction of extreme temperature indices in Yangtze and Yellow River basins by CMIP5 models[J]. Earth Sci, 2020, 45(6):1887-1904.
[7]
TIAN J X, ZHANG Z X, AHMED Z, et al. Projections of precipitation over China based on CMIP 6 models[J]. Stoch Environ Res Risk Assess, 2021, 35(4):831-848.DOI:10.1007/s00477-020-01948-0.
[8]
CHOI J R, CHUNG I M, JEUNG S J, et al. Development and verification of the available number of water intake days in ungauged local water source using the SWAT model and flow recession curves[J]. Water, 2021, 13(11):1-24.DOI:10.3390/w13111511.
[9]
夏军, 王渺林. 长江上游流域径流变化与分布式水文模拟[J]. 资源科学, 2008, 30(7):962-967.
XIA J, WANG M L. Runoff changes and distributed hydrologic simulation in the upper reaches of Yangtze River[J]. Resour Sci, 2008, 30(7):962-967.
[10]
班春广, 陶辉, 董义阳, 等. 未来气候情景下塔里木河干流日径流过程模拟研究[J]. 干旱区研究, 2018, 35(4):770-778.
BAN C G, TAO H, DONG Y Y, et al. Simulation of daily runoff process in the mainstream area of the Tarim River under future climate scenario[J]. Arid Zone Res, 2018, 35(4):770-778.DOI:10.13866/j.azr.2018.04.03.
[11]
王学全, 卢琦, 李保国. 应用模糊综合评判方法对青海省水资源承载力评价研究[J]. 中国沙漠, 2005, 25(6):944-949.
WANG X Q, LU Q, LI B G. Fuzzy comprehensive assessment for carrying capacity of water resources in Qinghai Province[J]. J Desert Res, 2005, 25(6):944-949.
[12]
陈梓延, 王艳君, 苏布达, 等. 基于多模式的乌江流域径流对气候变化的响应研究[J]. 长江流域资源与环境, 2021, 30(8):1927-1937.
CHEN Z Y, WANG Y J, SU B D, et al. Research on the response of runoff to climate change in Wujiang River basin based on multi-model[J]. Resour Environ Yangtze Basin, 2021, 30(8):1927-1937.
[13]
张增信, 栾以玲, 姜彤, 等. 长江三角洲极端降水趋势及未来情景预估[J]. 南京林业大学学报(自然科学版), 2008, 32(3):5-8.
ZHANG Z X, LUAN Y L, JIANG T, et al. Changes of extreme precipitation in the Yangtze River Delta and its pre-evaluation for future[J]. J Nanjing For Univ (Nat Sci Ed), 2008, 32(3):5-8.
[14]
张增信, 张强, 张金池, 等. 2050年前长江流域极端降水预估[J]. 气候变化研究进展, 2008(21):32-36.
ZHANG Z X, ZHANG Q, ZHANG J C. Projection of future precipitation extremes change(2001-2050)in the Yangtze River basin[J]. Clim Cha Res, 2008(21):32-36.
[15]
刘君龙, 袁喆, 许继军, 等. 长江流域气象干旱演变特征及未来变化趋势预估[J]. 长江科学院院报, 2020, 37(10):28-36.
LIU J L, YUAN Z, XU J J, et al. Meteorological drought evolution characteristics and future trends in the Yangtze River basin[J]. J Yangtze River Sci Res Inst, 2020, 37(10):28-36.DOI:10.11988/ckyyb.20190830.
[16]
周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP 6)评述[J]. 气候变化研究进展, 2019, 15(5):445-456.
ZHOU T J, ZOU L W, CHEN X L. Commentary on the Coupled Model Intercomparison Project Phase 6(CMIP6)[J]. Clim Change Res, 2019, 15(5):445-456.DOI:10.12006/j.issn.1673-1719.2019.193.
[17]
曹丽格, 方玉, 姜彤, 等. IPCC影响评估中的社会经济新情景(SSPs)进展[J]. 气候变化研究进展, 2012, 8(1):74-78.
CAO L G, FANG Y, JIANG T, et al. Advances in shared socio-economic pathways for climate change research and assessment[J]. Progressus Inquisitiones DE Mutat Clim, 2012, 8(1):74-78.DOI:10.3969/j.issn.1673-1719.2012.01.012.
[18]
WENG Y, CAI W, WANG C. The application and future directions of the shared socioeconomic pathways (SSPs)[J]. Climate Change Research, 2020, 16(2): 215-222.
[19]
CHEN W Y, WANG H, HUANG W L, et al. Shared social-economic pathways (SSPs) modeling:application of global multi-region energy system model[J]. Energy Procedia, 2017, 142:2467-2472.DOI:10.1016/j.egypro.2017.12.184.
[20]
YUNUS F, CHANG N K, FAKARUDDIN F J, et al. Modelling of surface air temperature element in Malaysia[J]. Dev Earth Sci, 2015, 3:10.DOI:10.14355/des.2015.03.002.
[21]
WOOD A W, LEUNG L R, SRIDHAR V, et al. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs[J]. Clim Change, 2004, 62(1/2/3):189-216.DOI:10.1023/B:CLIM.0000013685.99609.9e.
[22]
WANG L, CHEN W. Equiratio cumulative distribution function matching as an improvement to the equidistant approach in bias correction of precipitation[J]. Atmos Sci Lett, 2014, 15(1):1-6.DOI:10.1002/asl2.454.
[23]
陶纯苇, 姜超, 孙建新. CMIP 5多模式集合对东北三省未来气候变化的预估研究[J]. 地球物理学报, 2016, 59(10):3580-3591.
TAO C W, JIANG C, SUN J X. Projection of future changes in climate in northeast China using a CMIP5 multi-model ensemble[J]. Chin J Geophys, 2016, 59(10):3580-3591.
[24]
程娅蓓. 亚澳季风年际变率主模态的模拟评估与预测方法研究[D]. 南京: 南京信息工程大学, 2016.
CHENG Y B. The simulation assessment and prediction method research on the major modes of the Asian-Australian monsoon interannual variability[D]. Nanjing: Nanjing University of Information Science & Technology, 2016.
[25]
李晓蕾, 王卫光, 张淑林. 基于CMIP 6多模式的长江流域未来降水变化趋势分析[J]. 中国农村水利水电, 2022(3):1-7,12.
LI X L, WANG W G, ZHANG S L. A trend analysis of future precipitation in the Yangtze River basin based on CMIP6 multi-model[J]. China Rural Water Hydropower, 2022(3):1-7,12.
[26]
KATIRAIE-BOROUJERDY P S, AKBARI A A, CHAVOSHIAN A, et al. Assessment of seven CMIP5 model precipitation extremes over Iran based on a satellite-based climate data set[J]. Int J Climatol, 2019, 39(8):3505-3522.DOI:10.1002/joc.6035.
PDF(2585 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/