Seasonal variations in photosynthetic efficiency and antioxidant characteristics of the current and one year-old leaves in Torreya grandis‘Merrillii’

ZHAO Xiaolong, SHEN Jiayi, LIU Tao, WU Jiasheng, HU Yuanyuan

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (2) : 45-50.

PDF(1956 KB)
PDF(1956 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (2) : 45-50. DOI: 10.12302/j.issn.1000-2006.202204017

Seasonal variations in photosynthetic efficiency and antioxidant characteristics of the current and one year-old leaves in Torreya grandis‘Merrillii’

Author information +
History +

Abstract

【Objective】 Determination of seasonal changes in chlorophyll fluorescence parameters, antioxidant enzymes, malondialdehyde (MDA) and other parameters in current and 1 year-old leaves of Torreya grandis ‘Merrillii’ was to study the adaptive mechanism of the photosynthetic characteristics of T. grandis ‘Merrillii’ leaves to temperature changes during season. 【Method】 The chlorophyll fluorescence parameters, specific leaf weight (SLW), antioxidant enzyme activity and soluble protein changes of T. grandis ‘Merrillii’ leaves were measured in May, June, August, November and January of the second year. 【Result】 (1) Compared with mid-May, ΦPSⅡ of T. grandis ‘Merrillii’ leaves in mid-August was significantly up-regulated, while ΦNPQ was significantly down-regulated, and ΦNOwith little change. SOD and CAT activities in T. grandis ‘Merrilli’ current leaves were significantly increased, POD activity was significantly decreased, and MDA with little change.(2) Compared with mid-November, the average temperature in January of the second year decreased by nearly 10 ℃. ΦPSⅡ and ΦNPQ of T. grandis ‘Merrillii’ current leaves and one-year old leaves decreased significantly, while their ΦNOand MDA content increased significantly. 【Conclusion】 Compared with mid-May, T. grandis ‘Merrillii’ current leaves and one-year old leaves markedly improved ΦPSⅡ in mid-August is due to the high temperature and its leaves to absorb more light, and used for electron transfer, less dissipation of energy in the form of heat, the photosynthetic photoinhibition not occurring, its strong antioxidant enzyme system can coordinate to help them adapt to the high temperature specular environment. Compared with mid-November, T. grandis ‘Merrillii’ current leaves and one-year old leaves suffered cold damage during overwintering in mid-January of the second year, and the photosynthetic organs of leaves suffered light damage. Above all, T. grandis ‘Merrillii’ leaves are resistant to heat weather but not to cold weather, which may be the limiting factor of northern expansion.

Key words

Torreya grandis ‘Merrillii’ / different leaf age / antioxidant enzymes / photosynthetic characteristics / seasonal change

Cite this article

Download Citations
ZHAO Xiaolong , SHEN Jiayi , LIU Tao , et al . Seasonal variations in photosynthetic efficiency and antioxidant characteristics of the current and one year-old leaves in Torreya grandis‘Merrillii’[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(2): 45-50 https://doi.org/10.12302/j.issn.1000-2006.202204017

References

[1]
陈力耕, 王辉, 童品璋. 香榧的主要品种及其开发价值[J]. 中国南方果树, 2005, 34(5): 33-34.
CHEN L G, WANG H, TONG P Z. The main varieties of Torreya grandis and its development value[J]. South China Fruits, 2005, 34(5): 33-34. DOI: 10.3969/j.issn.1007-1431.2005.05.017.
[2]
黎章矩, 程晓建, 戴文圣, 等. 浙江香榧生产历史、现状与发展[J]. 浙江林学院学报, 2005, 21(4):471-474.
LI Z J, CHENG X J, DAI W S, et al. History and status and development of Torreya grandis in Zhejiang Province[J]. J Zhejiang For Coll, 2004, 21(4): 471-474. DOI: 10.3969/j.issn.2095-0756.2004.04.023.
[3]
WU Z M, ZHANG X, WANG J L, et al. Leaf chloroplast ultrastructure and photosynthetic properties of a chlorophyll-deficient mutant of rice[J]. Photosynthetica, 2014, 52(2): 217-222. DOI: 10.1007/s11099-014-0025-x.
[4]
周振翔, 李志康, 陈颖, 等. 叶绿素含量降低对水稻叶片光抑制与光合电子传递的影响[J]. 中国农业科学, 2016, 49(19): 3709-3720.
ZHOU Z X, LI Z K, CHEN Y, et al. Effects of reduced chlorophyll content on photoinhibition and photosynthetic electron transport in rice leaves[J]. Sci Agric Sin, 2016, 49(19): 3709-3720. DOI: 10.3864/j.issn.0578-1752.2016.19.004.
[5]
尹永强, 胡建斌, 邓明军. 植物叶片抗氧化系统及其对逆境胁迫的响应研究进展[J]. 中国农学通报, 2007, 23(1): 115-120.
YIN Y Q, HU J B, DENG M J. Latest development of antioxidant system and responses to stress in plant leaves[J]. Chinese Agri Sci Bull, 2007, 23(1) : 115-120.
[6]
陈婷婷, 符卫蒙, 余景, 等. 彩色稻叶片光合特征及其与抗氧化酶活性、花青素含量的关系[J]. 中国农业科学, 2022, 55(3): 467-478.
CHEN T T, FU W M, YU J, et al. The photosynthesis characteristics of colored rice leaves and its relation with antioxidant capacity and anthocyanin content[J]. Sci Agric Sin. 2022, 55(3): 467-478. DOI: 10.3864/j.issn.0578-1752.2022.03.004.
[7]
刘春燕, 周龙, 贾舟楫, 等. 黄化对吐鲁番葡萄叶片光合及叶绿素荧光特性的影响[J]. 经济林研究, 2018, 36(2): 115-120.
LIU C Y, ZHOU L, JIA Z J, et al. Effects of chlorosis on photosynthetic and chlorophyll fluorescence characteristics of Turpan grape leaves[J]. Nonwood For Res, 2018, 36(2): 115-120. DOI: 10.14067/j.cnki.1003-8981.2018.02.017.
[8]
黄小辉, 吴焦焦, 王玉书, 等. 不同供氮水平核桃的生长及叶绿素荧光特性[J]. 南京林业大学学报, 2022, 46(2): 119-126.
HUANG X H, WU J J, WANG Y S, et al. Growth and chlorophyll fluorescence characteristics of walnut (Juglans regia) seedling under different nitrogen supply levels[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(2): 119-126. DOI: 10.12302/j.issn.1000-2006.202104016.
[9]
董斌, 蓝来娇, 黄永芳, 等. 干旱胁迫对油茶叶片叶绿素含量和叶绿素荧光参数的影响[J]. 经济林研究, 2020, 38(3):16-25.
DONG B, LAN L J, HUANG Y F, et al. Effects of drought stress on photosynthetic pigments and chlorophyll fluorescence characteristics in leaves of Camellia oleifera[J]. Nonwood For Res, 2020, 38(3): 16-25. DOI: 10.14067/j.cnki.1003-8981.2020.03.003.
[10]
黄增冠, 喻卫武, 罗宏海, 等. 香榧不同叶龄叶片光合能力与氮含量及其分配关系的比较[J]. 林业科学, 2015, 51(2): 44-51.
HUANG Z G, YU W W, LUO H H, et al. Photosynthetic characteristics and their relationships with leaf nitrogen content and nitrogen allocation in leaves at different leaf age[J]. Sci Silvae Sin, 2015, 51(2): 44-51. DOI: 10.11707/j.1001-7488.20150206.
[11]
HU Y Y, ZHANG Y L, YU W W et al. Novel insights into the influence of seed sarcotesta photosyntheis on accumulation of seed dry matter and oil content in Torreya grandis cv. ‘Merrillii’[J]. Front Plant Sci, 2018, 8: 2179. DOI: 10.3389/fpls.2017.02179.
[12]
靳川, 查天山, 贾昕, 等. 毛乌素沙地少柳光系统Ⅱ光保护机制和能量分配动态及其影响因子[J]. 林业科学, 2020, 56(10): 34-44.
JIN C, ZHA T S, JIA X, et al. Light energy partitioning, photoprotection and influencing factors of photosystem Ⅱ in an exotic species (Salix psammophila) in Mu us sandy land[J]. Sci Silvae Sin, 2020, 56(10): 34-44. DOI: 10.11707/j.1001-7488.20170105.
[13]
LI T T, HU Y Y, DU X H, et al. Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. Merrillii seedlings by activating photosynthesis and enhancing antioxidant systems[J]. PLoS One, 2014, 9(10): e109492. DOI: 10.1371/journal.pone.0109492.
[14]
张志良, 瞿伟菁, 李小方. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2009.
ZHANG Z L, QU W J, LI X F. Experimental instruction of plant physiology[M]. Beijing: Higher Education Press, 2009.
[15]
BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72 (1/2): 248-254. DOI: 10.1016/0003-2697(76)90527-3.
[16]
冯玉龙, 曹坤芳, 冯志立, 等. 四种热带雨林树种幼苗比叶重, 光合特性和暗呼吸对生长光环境的适应[J]. 生态学报, 2002, 22(6): 901-910.
FENG Y L, CAO K F, FENG Z L, et al. Acclimation of Lamina mass per unit area,photosynthetic characteristics and dark respiration to growth light regimes in four tropical rainforest species[J]. Acta Ecol Sin, 2002, 22(6): 901-910. DOI: 10.3321/j.issn:1000-0933.2002.06.015.
[17]
郝向春, 周帅, 翟瑜, 等. 温度变化对南极假山毛榉光合系统的影响[J]. 中南林业科技大学学报. 2019, 39(9):1-7.
HAO X C, ZHOU S, ZHAI Y, et al. Influence of temperature stress on photosystem of Nothofagus antarctica[J]. J Central South Univ Forestry Technol, 2019, 39(9):1-7. DOI: 10.14067/j.cnki.1673-923x.2019.09.001.
[18]
徐超, 王明田, 杨再强, 等. 高温对温室草莓光合生理特性的影响及胁迫等级构建[J]. 应用生态学报, 2021, 32(1): 231-240.
XU C, WANG M T, YANG Z Q, et al. Effects of high temperature on photosynthetic physiological characteristics of strawberry seedlings in greenhouse and construction of stress level[J]. Chin J Appl Ecol, 2021, 32(1):231-240.DOI: 10.13287/j.1001-9332.202101.028.
[19]
ISHIDA A, YAMAZAKI J Y, HARAYAMA H, et al. Photoprotection of evergreen and drought-deciduous tree leaves to overcome the dry season in monsoonal tropical dry forests in Thailand[J]. Tree Physiol, 2014, 34(1): 15-28. DOI: 10.1093/treephys/tpt107.
[20]
孙猛, 吕德国, 刘威生. 不同品种群15个杏品种荧光特性研究初探[J]. 中国农学通报, 2010, (6): 171-176.
SUN M, LYU D G, LIU W S. Studies on the chlorophyll fluorescent characteristics of 15 apricot cultivars among different variety groups[J]. Chin Agric Sci Bull, 2011, 27(6)171-176.DOI: 10.3969/j.issn.1002-2910.2006.03.001.
[21]
UZILDAY B, TURKAN I, SEKMEN A H, et al. Comparison of ROS formation and antioxidant enzymes in Cleome gynandra (C4) and Cleome spinosa (C3) under drought stress[J]. Plant Sci, 2012, 182:59-70.DOI: 10.1016/j.plantsci.2011.03.015.
[22]
张强, 郭传友, 张兴旺, 等. 基于光合作用和抗氧化机制的南方铁杉和褐叶青冈越冬策略研究[J]. 植物研究, 2015, 35(2):200-207.
ZHANG Q, GUO C Y, ZHANG X W, et al. Photosynthesis and antioxidant defense strategies in overwintering plants of Tsuga chinensis and Cyclobalanopsis stewardiana[J]. Bull Bot Res, 2015, 35(2):200-207.DOI: 10.7525/j.issn.1673-5102.2015.02.007.
[23]
王丹, 宣继萍, 郭海林, 等. 结缕草的抗寒性与体内碳水化合物、脯氨酸、可溶性蛋白季节动态变化的关系[J]. 草业学报, 2011, 20(4): 98-107.
WANG D, XUAN J P, GUO H L, et al. Seasonal changes of freezing tolerance and its relationship to the contents of carbohydrates, proline, and soluble protein of Zoysia[J]. Acta Prataculturae Sin, 2011, 20(4): 98-107.
[24]
王泽华, 秦伟. 不同居群新疆野苹果生理响应差异与抗寒性的关系[J]. 经济林研究, 2018, 36(2): 20-28.
WANG Z H, QIN W. Study on the relationship between physiological response and cold hardiness of Malus sieversii in different populations[J]. Nonwood For Res, 2018, 36(2): 20-28.
[25]
CATONI R, GRATANI L. Variations in leaf respiration and photosynthesis ratio in response to air temperature and water availability among Mediterranean evergreen species[J]. J Arid Environ, 2014, 102: 82-88. DOI: 10.1016/j.jaridenv.2013.11.013.
PDF(1956 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/