JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (3): 25-32.doi: 10.12302/j.issn.1000-2006.202309037
Previous Articles Next Articles
ZHAI Ningning1(), SHI Ke1, RUAN Honghua1,*(
), NI Juanping1, FANG Yu1, CAO Guohua2, SHEN Caiqin2, XU Yaming2, HUO Jianjun3
Received:
2023-09-27
Accepted:
2024-12-07
Online:
2025-05-30
Published:
2025-05-27
Contact:
RUAN Honghua
E-mail:18951802663@163.com;hhruan@njfu.edu.cn
CLC Number:
ZHAI Ningning, SHI Ke, RUAN Honghua, NI Juanping, FANG Yu, CAO Guohua, SHEN Caiqin, XU Yaming, HUO Jianjun. The variation characteristics of particulate organic carbon and mineral-associated organic carbon during the development of Metasequoia glyptostroboides plantations[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(3): 25-32.
Table 1
Stand characteristics of Metasequoia glyptostroboides plantations at different developmental stages"
林龄/a age | 平均树高/m mean tree height | 平均胸径/cm mean DBH | 林分密度/(株·hm-2) stand density | 地表温度/℃ soil surface temperature | 凋落物现存量/(g·m-2) existing litter biomass |
---|---|---|---|---|---|
7 | 8.2±0.8 | 10.5±0.5 | 294 2 | 5.5±0.2 | 751.8±40.4 |
16 | 20.1±0.9 | 20.9±1.9 | 117 5 | 5.8±0.3 | 530.6±138.0 |
21 | 22.4±1.4 | 25.8±1.5 | 122 5 | 5.6±0.2 | 608.7±37.4 |
26 | 22.9±0.3 | 27.0±1.7 | 575 | 5.2±0.4 | 649.2±121.5 |
31 | 23.2±1.1 | 27.4±2.4 | 667 | 6.1±0.5 | 529.3±72.6 |
36 | 25.1±2.5 | 30.5±1.5 | 463 | 6.6±0.4 | 631.5±52.4 |
42 | 26.6±1.2 | 34.2±2.0 | 655 | 5.8±0.6 | 552.9±55.7 |
46 | 26.1±0.5 | 33.2±1.8 | 455 | 6.0±0.6 | 514.8±69.6 |
Table 2
Analysis of variance of soil organic carbon fractions in Metasequoia glyptostroboides plantations"
因子 factor | 林龄 forest age | 土层 soil layer | 林龄×土层 forest age× soil layer | |||||
---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | |||
颗粒有机碳含量POC content | 6.11 | <0.01 | 201.85 | <0.01 | 3.73 | <0.01 | ||
矿物结合有机碳含量 MAOC content | 2.56 | <0.05 | 0.48 | 0.75 | 1.49 | 0.08 | ||
土壤有机碳含量SOC content | 5.67 | <0.01 | 160.99 | <0.01 | 3.93 | <0.01 | ||
矿物结合有机碳含量/土壤有机碳含量MAOC/SOC | 3.76 | <0.01 | 97.21 | <0.01 | 1.59 | <0.05 | ||
颗粒有机碳含量/土壤有机碳含量POC/SOC | 5.20 | <0.01 | 116.38 | <0.01 | 1.78 | <0.05 | ||
颗粒有机碳含量/矿物结合有机碳含量POC/MAOC | 5.58 | <0.01 | 172.43 | <0.01 | 2.74 | <0.01 |
Fig. 1
Variations of POC and MAOC content with the stand development of Metasequoia glyptostroboides plantations Different uppercase letters indicate significant differences among different soil layers of the same forest age at 0.05 level, and different lowercase letters indicate significant differences among different forest ages of the same soil layer at 0.05 level. The same below."
[12] | WAN P, PENG H, JI X L, et al. Effect of stand age on soil microbial communities of a plantation Ormosia hosiei forest in southern China[J]. Ecological Informatics, 2021,62:101282.DOI: 10.1016/j.ecoinf.2021.101282. |
[13] | SHI K, LIAO J H, ZOU X M, et al. Accumulation of soil microbial extracellular and cellular residues during forest rewilding:implications for soil carbon stabilization in older plantations[J]. Soil Biology and Biochemistry, 2024,188:109250.DOI: 10.1016/j.soilbio.2023.109250. |
[14] | 胡建文, 刘常富, 勾蒙蒙, 等. 林龄对马尾松人工林微生物残体碳积累的影响机制[J]. 应用生态学报, 2024, 35(1):153-160. |
HU J W, LIU C F, GOU M M, et al. Influencing mechanism of stand age to the accumulation of microbial residue carbon in the Pinus massoniana plantations[J]. Chinese Journal of Applied Ecology, 2024, 35(1):153-160.DOI: 10.13287/j.1001-9332.202401.041. | |
[15] | 问宇翔, 冯坤乔, 童冉, 等. 水杉人工林细根和粗根碳氮磷计量特征对N添加的响应[J]. 林业科学研究, 2022, 35(3):161-168. |
WEN Y X, FENG K Q, TONG R, et al. Response of C,N,P stoichiometry of fine and coarse roots of Metasequoia glyptostroboides plantation to nitrogen addition[J]. Forestry Research, 2022, 35(3):161-168.DOI: 10.13275/j.cnki.lykxyj.2022.03.018. | |
[16] | 庄红蕾. 上海崇明岛水杉人工林生态系统碳动态研究[D]. 上海: 上海交通大学, 2012. |
ZHUANG H L. Study on the Carbon Dynamic of Metasequoia glyptostroboides plantation ecosystems in Chongming Island, Shanghai[D]. Shanghai: Shanghai Jiao Tong University, 2012. | |
[17] | 李佩聪. 环境水体中基于邻苯基苯酚:靛酚蓝分光光度法的铵氮测定新方法的研究和应用[D]. 厦门大学, 2019. |
LI P C. Study and application of the indophenol method for the determination of ammonium in natural waters using o-phenylphenol[D]. Xiamen: Xiamen University, 2019. | |
[18] | 国家海洋局. 海洋监测规范第4部分:海水分析:GB 17378.4—2007[S]. 北京: 中国标准出版社, 2008. |
State Ocean Administration of the PRC. The specification for marine monitoring:part 4:seawater analysis:GB 17378.4—2007[S]. Beijing: Standards Press of China, 2008. | |
[19] | 国家林业局. 森林土壤磷的测定:LY/T 1232—2015[S]. 北京: 中国标准出版社, 2016. |
State Forestry Administration of State Ocean Administration of the PRC. Phosphorus determination methods of forest soils:LY/T 1232—2015[S]. Beijing: Standards Press of China, 2016. | |
[20] | 索伦嘎. 围封对羊草草原植被—土壤特征的影响:聚焦土壤有机碳组分变化[D]. 呼和浩特: 内蒙古大学, 2022. |
SUO L G. Effects of enclosure on vegetation-soil features of the Leymus chinensis grassland:emphasizing the changes in soil organic carbon fractions[D]. Hohhot: Inner Mongolia University, 2022.DOI: 10.27224/d.cnki.gnmdu.2022.001508. | |
[21] | WANG C Q, XUE L, JIAO R Z. Soil organic carbon fractions,C-cycling associated hydrolytic enzymes,and microbial carbon metabolism vary with stand age in Cunninghamia lanceolate (Lamb.) Hook plantations[J]. Forest Ecology and Management, 2021,482:118887.DOI: 10.1016/j.foreco.2020.118887. |
[22] | 肖春波, 王海, 范凯峰, 等. 崇明岛不同年龄水杉人工林生态系统碳储量的特点及估测[J]. 上海交通大学学报(农业科学版), 2010, 28(1):30-34. |
XIAO C B, WANG H, FAN K F, et al. Carbon storage of Metasequoia glyptostroboides plantation ecosystems at different age stages in Chongming Island,east China[J]. Journal of Shanghai Jiaotong University (Agricultural Science), 2010, 28(1):30-34.DOI: 10.3969/j.issn.1671-9964.2010.01.006. | |
[23] | 谢天时. 不同林龄水杉人工林群落特征比较研究[J]. 福建林业科技, 2007, 34(2):19-23. |
XIE T S. A study on the comparision of community characteristic between different age Metasequoia glyptostroboides plantations[J]. Journal of Fujian Forestry Science and Technology, 2007, 34(2):19-23.DOI: 10.13428/j.cnki.fjlk.2007.02.005. | |
[24] | ZHANG L, ZHANG P, YU M K, et al. Soil organic carbon content and stocks in an age-sequence of Metasequoia glyptostroboides plantations in coastal area,east China[C]// Proceedings of the 2015 4th International Conference on Sustainable Energy and Environmental Engineering.December 20-21,2015.Shenzhen,China;Paris, France: Atlantis Press, 2016.DOI: 10.2991/icseee-15.2016.178. |
[25] | 江苏省林业局. 江苏省森林资源规划设计调查操作细则[Z]. 南京:江苏省林业局, 2007. |
[1] | FIGUERES C, SCHELLNHUBER H J, WHITEMAN G, et al. Three years to safeguard our climate[J]. Nature, 2017, 546(7660):593-595.DOI: 10.1038/546593a. |
[2] | BALESDENT J, BASILE-DOELSCH I, CHADOEUF J, et al. Atmosphere-soil carbon transfer as a function of soil depth[J]. Nature, 2018, 559(7715):599-602.DOI: 10.1038/s41586-018-0328-3. |
[3] | JOBBAGY E G, JACKSON R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications, 2000, 10(2):423.DOI: 10.2307/2641104. |
[4] | MATHIEU J A, HATTÉ C, BALESDENT J, et al. Deep soil carbon dynamics are driven more by soil type than by climate:a worldwide meta-analysis of radiocarbon profiles[J]. Global Change Biology, 2015, 21(11):4278-4292.DOI: 10.1111/gcb.13012. |
[5] | LUO Z K, WANG G C, WANG E L. Global subsoil organic carbon turnover times dominantly controlled by soil properties rather than climate[J]. Nature Communications, 2019, 10(1):3688.DOI: 10.1038/s41467-019-11597-9. |
[6] | LAVALLEE J M, SOONG J L, COTRUFO M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st Century[J]. Global Change Biology, 2020, 26(1):261-273.DOI: 10.1111/gcb.14859. |
[7] | LI W, ZHENG Z C, LI T X, et al. Effect of tea plantation age on the distribution of soil organic carbon fractions within water-stable aggregates in the hilly region of western Sichuan,China[J]. Catena, 2015, 133:198-205.DOI: 10.1016/j.catena.2015.05.017. |
[8] | GUO J, WANG B, WANG G B, et al. Effects of three cropland afforestation practices on the vertical distribution of soil organic carbon pools and nutrients in eastern China[J]. Global Ecology and Conservation, 2020,22:e00913.DOI: 10.1016/j.gecco.2020.e00913. |
[9] | COTRUFO M F, RANALLI M G, HADDIX M L, et al. Soil carbon storage informed by particulate and mineral-associated organic matter[J]. Nature Geoscience, 2019,12:989-994.DOI: 10.1038/s41561-019-0484-6. |
[10] | FERREIRA G W D, OLIVEIRA F C C, SOARES E M B, et al. Retaining eucalyptus harvest residues promotes different pathways for particulate and mineral-associated organic matter[J]. Ecosphere, 2021, 12(3):e03439.DOI: 10.1002/ecs2.3439. |
[11] | MIDWOOD A J, HANNAM K D, GEBRETSADIKAN T, et al. Storage of soil carbon as particulate and mineral associated organic matter in irrigated woody perennial crops[J]. Geoderma, 2021,403:115185.DOI: 10.1016/j.geoderma.2021.115185. |
[25] | Forestry Bureau of Jiangsu Province. Operation rules of forest resources planning and design survey of Jiangsu Province[Z]. Nanjing: Forestry Bureau of Jiangsu Province, 2007. |
[26] | LAJTHA K, TOWNSEND K L, KRAMER M G, et al. Changes to particulate versus mineral-associated soil carbon after 50 years of litter manipulation in forest and prairie experimental ecosystems[J]. Biogeochemistry, 2014, 119(1):341-360.DOI: 10.1007/s10533-014-9970-5. |
[27] | 刘江伟, 徐海东, 林同岳, 等. 海涂围垦区不同林分土壤活性有机碳垂直变化特征[J]. 林业科学研究, 2022, 35(3):18-26. |
LIU J W, XU H D, LIN T Y, et al. Vertical variation patterns in soil labile organic carbon in different stands in coastal reclamation area[J]. Forestry Research, 2022, 35(3):18-26.DOI: 10.13275/j.cnki.lykxyj.2022.03.003. | |
[28] | MIKUTTA R, TURNER S, SCHIPPERS A, et al. Microbial and abiotic controls on mineral-associated organic matter in soil profiles along an ecosystem gradient[J]. Scientific Reports, 2019, 9(1):10294.DOI: 10.1038/s41598-019-46501-4. |
[29] | 侯超, 张申平, 马跃龙. 特异性乳糖酶的开发研究进展[J]. 生物加工过程, 2024, 22(1):81-88. |
HOU C, ZHANG S P, MA Y L. Progress on development of characteristic lactase[J]. Chinese Journal of Bioprocess Engineering, 2024, 22(1):81-88. DOI:10.3969/j.issn.1672-3678.2024.01.011. | |
[30] | VOGEL C, HEISTER K, BUEGGER F, et al. Clay mineral composition modifies decomposition and sequestration of organic carbon and nitrogen in fine soil fractions[J]. Biology and Fertility of Soils, 2015, 51(4):427-442.DOI: 10.1007/s00374-014-0987-7. |
[31] | 曹国华, 姚继周, 杨鑫, 等. 水杉人工林细根形态及生物量分布规律[J]. 安徽农业科学, 2016, 44(2):9-11. |
CAO G H, YAO J Z, YANG X, et al. Morphology of fine roots of Metasequoia glyptostroboides plantation and its biomass distribution laws[J]. Journal of Anhui Agricultural Sciences, 2016, 44(2):9-11.DOI: 10.13989/j.cnki.0517-6611.2016.02.004. | |
[32] | KEILUWEIT M, BOUGOURE J J, NICO P S, et al. Mineral protection of soil carbon counteracted by root exudates[J]. Nature Climate Change, 2015,5:588-595.DOI: 10.1038/nclimate2580. |
[33] | ROCCI K S, LAVALLEE J M, STEWART C E, et al. Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter:a meta-analysis[J]. Science of The Total Environment, 2021,793:148569.DOI: 10.1016/j.scitotenv.2021.148569. |
[34] | RUMPEL C, KÖGEL-KNABNER I. Deep soil organic matter: a key but poorly understood component of terrestrial C cycle[J]. Plant and Soil, 2011, 338(1):143-158.DOI: 10.1007/s11104-010-0391-5. |
[35] | BOUNOUARA Z, CHEVALLIER T, BALESDENT J, et al. Variation in soil carbon stocks with depth along a toposequence in a sub-humid climate in north Africa (Skikda,Algeria)[J]. Journal of Arid Environments, 2017, 141:25-33.DOI: 10.1016/j.jaridenv.2017.02.001. |
[36] | CARDINAEL R, CHEVALLIER T, BARTHÈS B G, et al. Impact of alley cropping agroforestry on stocks,forms and spatial distribution of soil organic carbon: a case study in a Mediterranean context[J]. Geoderma, 2015, 259/260:288-299.DOI: 10.1016/j.geoderma.2015.06.015. |
[37] | MONI C, RUMPEL C, VIRTO I, et al. Relative importance of sorption versus aggregation for organic matter storage in subsoil horizons of two contrasting soils[J]. European Journal of Soil Science, 2010, 61(6):958-969.DOI: 10.1111/j.1365-2389.2010.01307.x. |
[38] | FANG H J, CHENG S L, YU G R, et al. Nitrogen deposition impacts on the amount and stability of soil organic matter in an alpine meadow ecosystem depend on the form and rate of applied nitrogen[J]. European Journal of Soil Science, 2014, 65(4):510-519.DOI: 10.1111/ejss.12154. |
[39] | SOONG J L, FUCHSLUEGER L, MARAÑON-JIMENEZ S, et al. Microbial carbon limitation:the need for integrating microorganisms into our understanding of ecosystem carbon cycling[J]. Global Change Biology, 2020, 26(4):1953-1961.DOI: 10.1111/gcb.14962. |
[40] | DING W L, CONG W F, LAMBERS H. Plant phosphorus-acquisition and-use strategies affect soil carbon cycling[J]. Trends in Ecology & Evolution, 2021, 36(10):899-906.DOI: 10.1016/j.tree.2021.06.005. |
[1] | CAO Lili, RUAN Honghua, LI Yuanyuan, NI Juanping, WANG Guobing, CAO Guohua, SHEN Caiqin, XU Yaming. Variations of surface soil macrofauna in different aged Metasequoia glyptostroboides plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 91-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||