南京林业大学学报(自然科学版) ›› 2015, Vol. 39 ›› Issue (02): 155-162.doi: 10.3969/j.issn.1000-2006.2015.02.027
赵正萍1,2,嵇保中1,2*,刘曙雯3,曹丹丹1,2,王丽平1,2,许忠祥4
出版日期:
2015-03-31
发布日期:
2015-03-31
基金资助:
ZHAO Zhengping1,2, JI Baozhong1,2*, LIU Shuwen3, CAO Dandan1,2, WANG Liping1,2, XU Zhongxiang4
Online:
2015-03-31
Published:
2015-03-31
摘要: 应用载体昆虫传递病原物防治有害生物主要是利用载体昆虫与目标病虫害之间的共栖或生态位重叠关系,通过载体昆虫主动搜寻目标病虫害,传递病原物与天敌生物,侵染或捕食有害生物,达到防治的目的。笔者综述了国内外应用载体昆虫传递病原物防治植物病虫害的研究进展,内容主要包括载体昆虫和传递的病原物种类、在病虫害防治上的应用现状以及病原物携带与释放技术等,并就利用载体昆虫携带病原物开展生物防治所面临的问题进行了探讨和展望。
中图分类号:
赵正萍,嵇保中,刘曙雯,等. 利用昆虫携带病原物实施生物防治的研究进展[J]. 南京林业大学学报(自然科学版), 2015, 39(02): 155-162.
ZHAO Zhengping, JI Baozhong, LIU Shuwen, CAO Dandan, WANG Liping, XU Zhongxiang. Research progress of biological control by use of insects to deliver pathogens[J].Journal of Nanjing Forestry University (Natural Science Edition), 2015, 39(02): 155-162.DOI: 10.3969/j.issn.1000-2006.2015.02.027.
[1] Entwistle P F, Adams P H W, Evans H F. Epizootiology of a nuclear polyhedrosis virus in European spruce sawfly(Gilpinia hercyniae): the rate of passage of infective virus through the gut of birds during cage tests[J]. Journal of Invertebrate Pathology, 1978, 31(3): 307-312. [2] 戴冠群, 陈庆雄, 洗炳才, 等. 鸟类传播昆虫病毒的观察[J]. 病毒学杂志, 1986, 1(4): 56-64.Dai G Q, Chen Q X, Xian B C, et al. Observation on the dispersion of inclusions bodies of insect virus by birds in forest[J]. Virologica Sinica, 1986, 1(4): 56-64. [3] Kevan P G, Kapongo J P, Al-mazra’awi M, et al. Honey bees, bumble bees, and biocontrol[C]//James R, Pitts-Singer T L. Bee pollination in agricultural ecosystems. New York: Oxford University Press, 2008:65-79. [4] 沈登荣, 和绍禹, 张宏瑞, 等. 蜜蜂作为病原物载体的研究进展[J]. 中国生物防治, 2010, 26(S1): 118-122.Shen D R, He S Y, Zhang H R, et al. Research advances on honey bees as pathogens carrier[J]. Chinese Journal of Biological Control, 2010, 26(S1): 118-122. [5] Mommaerts V, Smagghe G. Entomovectoring in plant protection[J]. Arthropod-Plant Interactions, 2011, 5(2): 81-95. [6] Enda N, Igarashi M, Fukuyama K, et al. Control of Monochamus alternatus Hope(Coleoptera, Cerambycidae)by the entomogenous fungus, Beauveria bassiana Vuillemin(Deuteromycotina, Hyphomycetes)carried by Cryphalus fulvus Niijima(Coleoptera, Scolytidae)(in Japanese)[R]// Transactions of the 100th Meeting of Japanese Forest Society, 1989: 579-580. [7] Enda N, Gotoh T, Fukuyama K,et al. Control of Monochamus alternatus Hope(Coleopter; Cerambycidae)by the entomogenous fungus, Beauveria bassiana Vuillemin(Deuteromycotina; Hyphomycetes)carried by Cryphalus fulvus Niijima(Coleoptera; Scolytidae)in Izu-Ohshima Island[R]// Transactions of the 102nd Meeting of Japanese Forest Society, 1991: 281-282. [8] Shimazu M.Use of microbes for control of Monochamus alternatus, vector of the invasive pinewood nematode [C]//Hajek A E,Glare T R, O’Callaghan M. Progress in biological control: use of microbes for control and eradication of invasive arthropods. PA: Springer, 2009:141-157. [9] 徐福元. 国内外松褐天牛天敌的研究利用进展[J]. 世界林业研究, 1998(3): 41-45.Xu F Y.Advances in the research in the natural enemy of Monochamus alternatus in the world[J]. World Forestry Research, 1998(3): 41-45. [10] Kinuura H, Ohya E, Makihara H,et al. Infection rate of Monochamus alternatus Hope(Coleoptera: Cerambycidae)by an entomogenous fungus through mass-release of vector beetles Cryphalus fulvus Niijima(Coleoptera: Scolytidae)using an improved application device [J]. Journal of the Japanese Forestry Society, 1999, 81(1): 17-21. [11] Al-mazra’awi M S, Shipp L, Broadbent B, et al. Biological control of Lygus lineolaris (Hemiptera: Miridae)and Frankliniella occidentalis(Thysanoptera: Thripidae)by Bombus impatiens(Hymenoptera: Apidae)vectored Beauveria bassiana in greenhouse sweet pepper[J]. Biological Control, 2006a, 37(1): 89-97. [12] Kapongo J P, Shipp L, Kevan P,et al. Optimal concentration of Beauveria bassiana vectored by bumble bees in relation to pest and bee mortality in greenhouse tomato and sweet pepper[J]. Bio Control, 2008b, 53(5): 797-812. [13] Gross H R, Hamm J J, Carpenter J E.Design and application of a hive-mounted device that uses honey bees(Hymenoptera: Apidae)to disseminate Heliothis nuclear polyhedrosis virus[J]. Environmental Entomology, 1994, 23(2): 492-501. [14] Al-mazra’awi M S, Shipp J L, Broadbent A B, et al. Dissemination of Beauveria bassiana by honey bees(Hymenoptera: Apidae)for control of tarnished plant bug(Hemiptera: Miridae)on canola[J]. Environmental Entomology, 2006b, 35(6): 1569-1577. [15] Jyoti J L, Brewer G J.Honey bees(Hymenoptera: Apidae)as vectors of Bacillus thuringiensis for control of banded sunflower moth(Lepidoptera: Tortricidae)[J]. Environmental Entomology, 1999, 28(6): 1172-1176. [16] Butt T M, Carreck N L, Ibrahim L, et al. Honey-bee-mediated infection of pollen beetle(Meligethes aeneus Fab.)by the insect-pathogenic fungus, Metarhizium anisopliae[J]. Biocontrol Science and Technology, 1998, 8(4): 533-538. [17] Carreck N L, Butt T M, Clark S J, et al. Honey bees can disseminate a microbial control agent to more than one inflorescence pest of oilseed rape[J]. Biocontrol Science and Technology, 2007, 17(2): 179-191. [18] 王素英, 时亚琴, 赵蒙玲, 等. 肿腿蜂、肿腿蜂带菌防治光肩星天牛幼虫试验研究[J]. 内蒙古林业科技, 1999(1): 39-42,48.Wang S Y, Shi Y Q, Zhao M L,et al. Experiment of controlling Anoplophora glabripennis larva with Scleroderma guani and its carried fungus[J]. Inner Mongolia Forestry Science and Technology, 1999(1): 39-42,48. [19] 杨希, 黄金水, 何学友, 等. 管氏肿腿蜂及其带菌室内防治松墨天牛幼虫试验[J]. 福建林业科技, 2005, 32(3): 94-96, 99.Yang X, Huang J S, He X Y, et al. Experiment of controlling Monochamus alternatus larva with Scleroderma guani and its carried fungus in door[J]. Journal of Fujian Forestry Science and Technology, 2005, 32(3): 94-96, 99. [20] 刘洪剑, 朴春根, 汪来发, 等. 白僵菌和肿腿蜂对松墨天牛幼虫的作用[J]. 林业科学, 2007, 43(5): 64-68.Liu H J, Piao C G, Wang L F, et al. Biocontrol of Monochamus alternatus by Beauveria bassiana and Scleroderma guani[J]. Scientia Silvae Sinicae, 2007, 43(5): 64-68. [21] 潘永胜, 徐福元, 韩正敏. 管氏肿腿蜂及其带菌室内防治松褐天牛幼虫研究[J]. 江苏林业科技, 2009, 36(2): 11-14.Pan Y S, Xu F Y, Han Z M. Controlling on Monochamus alternatus larva with Scleroderma guani and carried fungus[J]. Journal of Jiangsu Forestry Science and Technology, 2009, 36(2):11-14. [22] 胡中成, 杨毅, 马良进, 等. 川硬皮肿腿蜂携带白僵菌主动传染松墨天牛探索试验[J]. 浙江林业科技, 2007, 27(3): 48-50.Hu Z C, Yang Y, Ma L J,et al. Experiment on Monochamus alternatus infected by Beauveria bassiana carried by Scleroderma sichuanensis [J]. Journal of Zhejiang Forestry Science and Technology, 2007, 27(3): 48-50. [23] 陈日曌, 郑洪兵, 石钟锋, 等. 载菌赤眼蜂携菌量及其对二化螟防治效果的研究[J]. 吉林农业科学, 2007, 32(6):39-40. [24] 朱景全, 雷朝亮, 彭辉银, 等. 应用赤眼蜂携带病毒防治棉铃虫的初步研究[J]. 昆虫天敌, 2002, 24(1): 20-25.Zhu J Q, Lei C L, Peng H Y, et al. Studies on the effect of Trichogramma carrying NPV to suppress Helicoverpa armigera[J]. Natural Enemies of Insects, 2002, 24(1): 20-25. [25] 徐红革, 彭辉银, 白志强, 等. 利用赤眼蜂携带HaNPV防治棉田害虫对天敌保护作用的研究[J]. 农药, 2003, 42(11): 45-46.Xu H G, Peng H Y, Bai Z Q, et al. Study on cotton field’s natural enemy protected with the pest control technology of HaNPV carried by Trichogramma pintoi[J]. Pesticides, 2003, 42(11): 45-46. [26] 孙光芝, 张俊杰, 阮长春, 等. 赤眼蜂载菌方式筛选及田间防治玉米螟效果[J]. 吉林农业大学学报, 2004, 26(2):138-141.Sun G Z, Zhang J J, Ruan C C, et al. Selection of bacterium-carrying methods of Trichogramma and efficacy of Ostrinia furnacalis control[J]. Journal of Jilin Agricultural University, 2004, 26(2): 138-141. [27] 孙光芝, 张俊杰, 阮长春. 携菌赤眼蜂防治亚洲玉米螟效果的研究[J]. 吉林农业科学, 2005, 30(3): 3-5. [28] 陈日曌, 李秀岩, 石钟锋, 等. 载菌赤眼蜂生物学特性及其对亚洲玉米螟防治效果的初步研究[J]. 吉林农业大学学报, 2007, 29(3): 259-261.Chen R Z, Li X Y, Shi Z F, et al. Preliminary study on biology characteristic and control effect on Ostrinia furnalis Guence of Trichogramma dendrolimi carrying Bt[J]. Journal of Jilin Agricultural University, 2007, 29(3): 259-261. [29] 彭辉银, 陈新文, 姜芸, 等. 松毛虫赤眼蜂携带质型多角体病毒防治马尾松毛虫[J]. 中国生物防治, 1998, 14(3):111-114.Peng H Y, Chen X W, Jiang Y,et al. Controlling Dendrolimus punctatus with Trichogramma dendrolimi carrying cytoplasmic polyhedrosis virus[J]. Chinese Journal of Biological Control, 1998, 14(3): 111-114. [30] 童清, 彭辉银. 应用带病毒的松毛虫赤眼蜂防治思茅松毛虫的研究[J]. 西部林业科学, 2009, 38(3): 102-105.Tong Q, Peng H Y. Study on control Dendrolimus kikuchii with Trichogramma dendrolimi egg card carrying virus[J]. Journal of West China Forestry Science, 2009, 38(3): 102-105. [31] 刘德波, 代艳梅, 文灿, 等. 烟蚜茧蜂载菌菌种与载菌方式筛选[J]. 中国生物防治, 2008, 24(3): 239-243.Liu D B, Dai Y M, Wen C, et al. Screening of fungus strains transmitted by Aphidius gifuensis and its transmitting ways[J]. Chinese Journal of Biological Control, 2008, 24(3): 239-243. [32] 叶斌, 曾宣利, 王国良. 东亚异蚤蝇及其携带白僵菌防治松墨天牛的研究[J]. 植物保护, 2011, 37(4): 106-111.Ye B, Zeng X L, Wang G L. Studies on biocontrol of Monochamus alternatus by Megaselia spiracularis carrying Beauveria bassiana[J]. Plant Protection, 2011, 37(4):106-111. [33] 何江成, 蒋衡, 汤显春, 等. “生物导弹”防治杨二尾舟蛾初报[J]. 新疆农业科学, 2006, 43(3): 224-227.He J C, Jiang H, Tang X C, et al. Preliminary report on “biological missile” controlling Cerura menciana Moore[J]. Xinjiang Agricultural Sciences, 2006, 43(3): 224-227. [34] 姜栋刚, 蒋衡, 刘静, 等. “生物导弹”对杨树二尾舟蛾越冬代的防治效果[J]. 农村科技, 2006(7): 39. [35] 薛敏, 翟鸣. “生物导弹”防治云南松毛虫试验[J]. 贵州林业科技, 2006, 34(2): 35-37.Xue M, Zhai M. The experiment on the control of Dendrolimus houi with bio-guide wasp missile BGWM[J]. Guizhou Forestry Science and Technology, 2006, 34(2): 35-37. [36] 王会文, 张亚军, 孔凡浩, 等. 生物导弹防治板栗桃蛀螟试验初报[J]. 天津农林科技, 2010(4): 25-26. [37] 罗怀海, 张家富, 李仔贵, 等. 应用“生物导弹”防治玉米螟新技术[J]. 四川农业科技, 2005(1): 34. [38] 曾庆亮. “生物导弹”防治玉米螟费省效宏[J]. 四川农业科技, 2011(4): 47. [39] 郑立新, 郑立华, 李姝然. “生物导弹”防治玉米螟技术研究[J]. 种子世界, 2011(10): 33. [40] 曹海昌. “生物导弹”对玉米螟防控效果的试验分析[J]. 河南农业, 2012(5): 30. [41] Yu H, Sutton J C.Effectiveness of bumblebees and honeybees for delivering inoculum of Gliocladium roseum to raspberry flowers to control Botrytis cinerea[J]. Biological Control, 1997, 10(2): 113-122. [42] Kovach J, Petzoldt R, Harman G E. Use of honey bees and bumble bees to disseminate Trichoderma harzianum 1295-22 to strawberries for Botrytis control[J]. Biological Control, 2000, 18(3): 235-242. [43] Kapongo J P, Shipp L, Kevan P,et al. Co-vectoring of Beauveria bassiana and Clonostachys rosea by bumble bees(Bombus impatiens)for control of insect pests and suppression of grey mould in greenhouse tomato and sweet pepper[J]. Biological Control, 2008, 46(3): 508-514. [44] Maccagnani B, Mocioni M, Ladurner E, et al. Investigation of hive-mounted devices for the dissemination of microbiological preparations by Bombus terrestris[J]. Bulletin of Insectology, 2005, 58(1): 3-8. [45] Mommaerts V, Put K, Vandeven J, et al. Development of a new dispenser for microbiological control agents and evaluation of dissemination by bumblebees in greenhouse strawberries[J]. Pest Management Science, 2010, 66: 1199-1207. [46] Dedej S, Delaphane K S, Scherm H. Effectiveness of honey bees in delivering the biocontrol agent Bacillus subtilis to blueberry flowers to suppress mummy berry disease[J]. Biological Control, 2004, 31(3): 422-427. [47] Thomson S V, Hansen D R, Flint K M. Dissemination of bacteria antagonistic to Erwinia amylovora by honey bees[J]. Plant Disease, 1992, 76(10): 1052-1056. [48] Johnson K B, Stockwell V O, Burgett D M, et al. Dispersal of Erwinia amylovora and Pseudomonas fluorescens by honey bees from hives to apple and pear blossoms[J]. Phytopathology, 1993, 83(5): 478-484. [49] Johnson K B, Stockwell V O, McLaughlin R J, et al. Effect of antagonistic bacteria on establishment of honey bee-dispersed Erwinia amylovora in pear blossoms and on fire blight control[J]. Phytopathology, 1993, 83(9): 995-1002. [50] Cornish D A, Voyle M D, Haine H M,et al. Distribution of benecial bacteria on nashi and apple owers using honey bees[C]// Proceedings of the 51st New Zealand Plant Protection Conference, New Zealand, 1998: 107-111. [51] Maccagnani B, Bazzi C, Biondi E, et al. Potential of Osmia cornuta as a carrier of antagonistic bacteria in biological control of re blight: a comparison with Apis mellifera[J]. Acta Horticulturae, 2006, 704: 379-386. [52] Maccagnani B, Giacomello F, Fanti M, et al. Apis mellifera and Osmia cornuta as carriers for the secondary spread of Bacillus subtilis on apple owers[J]. BioControl, 2009, 54: 123-133. [53] Moosbeckhofer R, Loncaric I, Oberlerchner J, et al. Use of honeybees(Apis mellifera)as vectors for fire blight antagonists in field experiments[J]. Acta Horticulturae, 2008, 793:461-464. [54] Peng G, Sutton J C, Kevan P G.Effectiveness of honey bees for applying the biocontrol agent Gliocladium roseum to strawberry flowers to suppress Botrytis cinerea[J]. Canadian Journal of Plant Pathology, 1992, 14(2): 117-129. [55] Sharoni S, Arnon D, Alon B, et al. Honey bee dispersal of the biocontrol agent Trichoderma harzianum T39: effectiveness in suppressing Botrytis cinerea on strawberry under field conditions[J]. European Journal of Plant Pathology, 2006, 116(2): 119-128. [56] van der Steen J J M, Donders J, Blacquière T. The use of honeybees as disseminators of Ulocladium atrum against grey mould in strawberries[J/OL]. [2013-10-10]. http://documents.plant.wur.nl/ppo/bijen/antagonisten.pdf. [57] van der Steen J J M, Langerak C J, van Tongeren C A M, et al. Aspects of the use of honeybees and bumblebees as vector of antagonistic micro-organisms in plant disease control[J]. Proceedings of the Netherlands Entomological Society, 2004, 15: 41-46. [58] Escande A R, Laich F S, Pedraza M V. Field testing of honeybee-dispersed Trichoderma spp. to manage sunflower head rot(Sclerotina sclerotiorum)[J]. Plant Pathology, 2002, 51: 346-351. [59] Biddinger D, Ngugi H, Frazier J. Development of the mason bee, Osmia cornifrons, as a targeted delivery system for biocontrol agents in the management of fire blight[J]. Pennsylvania Fruit News, 2009, 89(2): 95-100. [60] Biddinger D J, Ngugi H, Frazier J, et al. Development of the mason bee, Osmia cornifrons, as an alternative pollinator to honey bees and as a targeted delivery system for biological control agents in the management of fire blight[J]. Pennsylvania Fruit News, 2010, 90: 35-44. [61] Gao J Y, Ji B Z, Liu S W. A new species of Placusa Erichson(Coleoptera, Staphylinidae, Aleocharinae)from China[J]. Zootaxa, 2011, 3094: 43-51. [62] 高江勇, 嵇保中, 刘曙雯, 等. 微红梢斑螟蛀道节肢动物种群结构及生态位[J]. 生态学杂志, 2010, 29(2): 363-369.Gao J Y, Ji B Z,Liu S W, et al. Population composition and niche of arthropod community in pine shoot tunnel bored by Dioryctria rubella[J]. Chinese Journal of Ecology, 2010, 29(2): 363-369. [63] 曹丹丹, 嵇保中, 刘曙雯, 等. 松材线虫病死木皮下节肢动物生态位及跟随性评价[J]. 生态学杂志, 2013, 32(11):3015-3021.Cao D D, Ji B Z, Liu S W, et al. Niches and following performance evaluation of arthropod populations under the barks of dead pine trees caused by Bursaphelenchus xylophilus[J]. Chinese Journal of Ecology, 2013, 32(11): 3015-3021. [64] 陈晓明. 利用隐翅虫携带病原菌防治松墨天牛技术研究[D]. 南京: 南京林业大学, 2013.Chen X M. Researches on the control technology of Monochamus alternatus by use of entomopathogenic fungi carried by rove bettles bacteria[D]. Nanjing: Nanjing Forestry University, 2013. [65] Shipp L, Kapongo J P, Park H H, et al. Effect of bee-vectored Beauveria bassiana on greenhouse beneficials under greenhouse cage conditions[J]. Biological Control, 2012, 63: 135-142. [66] Albano S, Chagnon M, De Oliveira D, et al. Effectiveness of Apis mellifera and Bombus impatiens as dispersers of the Rootshield biofungicide(Trichoderma harzianum, strain T-22)in a strawberry crop[J]. Hellenic Plant Protection Journal, 2009, 2(2): 57-66. [67] Bilu A, Dag A, Elad Y, et al. Honey bee dispersal of biocontrol agents: an evaluation of dispensing devices[J]. Biocontrol Science and Technology, 2004, 14(6): 607-617. |
[1] | 彭萌萌, 吴红渠, 张佳雯, 闫丽琼, 曹传旺, 孙丽丽. 基于RNAi技术解析美国白蛾HcAnk1和HcAnk2基因功能及对HcNPV的敏感性[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 181-190. |
[2] | 方静, 张书曼, 严善春, 武帅, 赵佳齐, 孟昭军. 两种丛枝菌根真菌复合接种对青山杨叶片抗美国白蛾的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 144-154. |
[3] | 祝艳艳, 贾瑞瑞, 付钰, 常林, 岳远征, 杨秀莲, 王良桂. 不同楸树品种对茎腐病的抗性差异研究[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 155-165. |
[4] | 张馨方, 王广鹏, 张树航, 李颖, 郭燕. 不同抗螨性板栗差异次生代谢物筛选与分析[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 234-240. |
[5] | 赵亚楠, 孙天骅, 王利峰, 许强, 刘军侠, 高宝嘉, 周国娜. 油松抗性相关激素与代谢物对油松毛虫取食与剪叶刺激的响应[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 219-226. |
[6] | 张丞慧, 祖国浩, 王海洋, 薛昊. 蝇克跳小蜂属1中国新记录种(膜翅目:跳小蜂科)[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 214-218. |
[7] | 孙凯丽, 贺春玲, 胡俊杰, 方全博, 栾科, 任迎丰, 肖治术. 岩田蜾蠃𧎥在黄喙蜾蠃腹部的寄生习性研究[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 243-250. |
[8] | 程方, 孙婷玉, 叶建仁. 抗松针褐斑病湿地松未成熟合子胚胚性愈伤组织的诱导[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 175-182. |
[9] | 于赐刚, 郭晓平, 马月, 张振华, 刘燕, 董姗姗, 孙硕. 浙江松阳县鸟类群落结构和多样性分析[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 231-236. |
[10] | 刘佳磊, 白润娥, 张锴, 文才艺, 闫凤鸣. 我国桂花树上常见粉虱种类记述[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 237-244. |
[11] | 杨乐, 黄晓君, 包玉海, 包刚, 佟斯琴, 苏都毕力格. 无人机航高对落叶松毛虫虫害遥感监测精度的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 13-22. |
[12] | 高家军, 张旭, 郭颖, 刘昱坤, 郭安琪, 石蒙蒙, 王鹏, 袁莹. 融合Swin Transformer的虫害图像实例分割优化方法研究[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 1-10. |
[13] | 杨堃, 范习健, 薄维昊, 刘婕, 王俊玲. 基于视觉加强注意力模型的植物病虫害检测[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 11-18. |
[14] | 王立超, 陈凤毛, 董晓燕, 田成连, 王洋. 松墨天牛取食和产卵特性研究[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 219-224. |
[15] | 石慧敏, 叶建仁, 王焱, 陆蓝翔, 史纪武. 响应面优化贝莱斯芽孢杆菌(Bacillus velezensis)菌株YH-18产芽孢培养基和培养条件[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 209-218. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||