[1] IPCC Fourth Assessment Report of Working Group. Climate change 2007: the physical science basis[M]. Cambridge: Cambridge University Press, 2007.
[2] 祁秋艳, 杨淑慧, 仲启铖, 等. 崇明东滩芦苇光合特征对模拟增温的响应[J]. 华东师范大学学报(自然科学版), 2012(6):29-38. Doi:10.3969/j.issn.1000-5641.2012.06.004.
Qi Q Y, Yang S H, Zhong Q C, et al. Responses of photosynthetic characteristics of Phragmites australis to simulated temperature enhancement in Eastern Chongming Island, China[J]. Journal of East China Normal University(Natural Science), 2012(6):29-38.
[3] 窦立春. 低碳价值观及其实践路径[J]. 南京林业大学学报(人文社会科学版), 2011, 11(2):18-20. Doi:10.3969/j.issn.1671-1165.2011.02.006.
[4] Wang K Y, Kellomakis L K, Laitinen K. Acclimation of photosynthetic parameters in Scots pine after three years exposure to elevated temperature and CO2[J]. Agricultural and Forest Meteorology, 1996,82(1-4):195-217.
[5] 王淑琼, 王瀚强, 方燕, 等. 崇明岛滨海湿地植物群落固碳能力[J]. 生态学杂志, 2014, 33(4):915-921.
Wang S Q, Wang H Q, Fang Y, et al. Ability of plant carbon fixation in the coastal wetland of Chongming Island[J]. Chinese Journal of Ecology, 2014, 33(4):915-921.
[6] 卢妍, 宋长春, 王毅勇, 等. 植物对沼泽湿地生态系统CO2和CH4排放的影响[J]. 西北植物学报, 2007,27(11):2306-2313.
Lu Y, Song C C, Wang Y Y, et al. Influence of plants on CO2 and CH4 emission in wetland ecosystem[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(11):2306-2313.
[7] Ruser R, Flessa H, Russow R, et al. Emission of N2O, N2 and CO2 from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting[J]. Soil Biology and Biochemistry, 2006, 38(2): 263-274. Doi:10.1016/j.soilbio.2005.05.005.
[8] Rückauf U, Augustin J, Russow R, et al. Nitrate removal from drained and reflooded fensoils affected by soil N transformation processes and plant uptake[J]. Soil Biology & Biochemistry, 2004, 36:77-90.
[9] Morley N, Baggs E M. Carbon and oxygen controls on N2O and N2 production during nitrate reduction[J]. Soil Biology & Biochemistry, 2010, 42:1864-1871.
[10] 朱鲲杰, 谢文霞, 刘文龙, 等. 植物影响陆地生态系统N2O产生和释放的研究进展[J]. 地球与环境,2014, 42(3):456-463.
Zhu K J, Xie W X, Liu W L, et al. Progress in research on plant effect on N2O emission flux from terrestrial ecosystem[J]. Earth and Environment, 2014, 42(3):456-463.
[11] 李彬波,曾科,李瑞,等. 作物生长对土壤N2O排放影响的研究进展[J]. 土壤通报,2015,46(4):1003-1010.
Li B B, Zeng K, Li R, et al. A review on soil N2O emission as influenced by crop growth[J]. Chinese Journal of Soil Science, 2015,46(4):1003-1010.
[12] Hopkinson C S, Cai W J, Hi X P. Carbon sequestration in wetland dominated coastal systems: a global sink of rapidly diminishing magnitude[J]. Current Opinion in Environmental Sustainability,2012,4(2):186-194. Doi:10.1016/j.cosust.2012.03.005.
[13] Groffman P M, Gold A J, Addy K. Nitrous oxide production in riparian zones and its importance to national emission inventories[J]. Chemosphere: Global Change Science,2000,2(3):291-299.
[14] Yu Z, Li Y, Deng H, et al. Effect of Scirpus mariqueter on nitrous oxide emissions from a subtropical monsoon estuarine wetland[J]. Journal of Geophysical Research, 2012, 117:213-223. Doi:10.1029/2011JG001850.
[15] 胡泓, 王东启, 李杨杰, 等. 崇明东滩芦苇湿地温室气体排放通量及其影响因素[J]. 环境科学研究,2014, 27(1):43-50. Doi:10.13198/j.issn.1001-6929.2014.01.07.
Hu H, Wang D Q, Li Y J, et al. Greenhouse gases fluxes at Chongming Dongtan Phragmites australis wetland and the influencing factors[J]. Research of Environmental Sciences, 2014, 27(1):43-50.
[16] 陆健健.中国滨海湿地的分类[J].环境导报,1996(1):1-2.
[17] 袁兴中, 陆健健, 刘红. 河口盐沼植物对大型底栖动物群落的影响[J]. 生态学报, 2002, 22(3):326-333.
Yuan X Z, Lu J J, Liu H. Influence of characteristics of scirpus mariqueter community on the benthic macro-invertebrate in a salt marsh of the changjiang estuary[J]. Acta Ecologica Sinica, 2002, 22(3):326-333.
[18] 鲍士旦. 土壤农化分析[M]. 2版.北京:中国农业出版社,2000:81-83.
[19] 崔洪磊, 徐莎, 印杰, 等. 植物群落收割对滨海湿地沉积物中CO2和N2O释放的影响[J]. 环境科学研究,2015, 28(8):1200-1208. Doi:10.13198/j.issn.1001-6929.2015.08.04.
Cui H L, Xu S, Yin J, et al. Effects of vegetation harvest on CO2 and N2O emissions from sediments in a typical coastal wetland[J]. Research of Environmental Sciences, 2015, 28(8):1200-1208.
[20] Kandeler E, Gerber H. Short-term assay of soil urease activity using colorimetric determination of ammonium[J].Biology & Fertility of Soils, 1988, 6(1):68-72. Doi:10.1007/BF00257924.
[21] 关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
[22] 李勇,赵全升,张芳,等. 崇明东滩芦苇湿地氧化亚氮排放[J]. 环境科学学报,2010,30(12):2526-2534.
[23] 谢文霞,赵全升,张芳,等. 胶州湾河口湿地秋冬季N2O气体排放通量特征[J]. 地理科学,2011,31(4):464-469.
[24] 韩建刚, 曹雪. 典型滨海湿地干湿交替过程氮素动态的模拟研究[J]. 环境科学, 2013, 34(6):2383-2389.
Han J G, Cao X. Effects of drying-rewetting alternation on nitrogen dynamics in a typical coastal wetland: a simulation study[J]. Environmental Science, 2013, 34(6):2383-2389.
[25] 韩建刚, 郑伟, 吴春笃, 等. 湿地硝酸还原酶活性变化的干湿交替驱动机制[J]. 环境科学与技术, 2011,34(5):7-9,76. Doi:10.3969/j.issn.1003-6504.2011.05.002.
Han J G, Zheng W, Wu C D, et al. Response of nitrate reductase activity to alternation of drying and rewetting for sediment from a reed wetland[J]. Environmental Science & Technology, 2011, 34(5):7-9,76. Doi:10.3969/j.issn.1003-6504.2011.05.002.
[26] 郑伟,黄卫红,韩建刚. 崇明东滩湿地沉积物反硝化酶活性对干湿交替过程的响应研究[J]. 土壤通报,2013,44(1):122-127.
Zheng W, Huang W H, Han J G. Denitrifying enzyme activities under alternation of drying and rewetting for wetland sediments in Chongming East Intertidal Flat[J]. Chinese Journal of Soil Science, 2013,44(1):122-127.
[27] Christoph S S, David J R, Elizabeth M B. Constraining the conditions conducive to dissimilatory nitrate reduction to ammonium in temperate arable soils[J]. Soil Biology & Biochemistry,2011,43:1607-1611. Doi:10.1016/j.soilbio.2011.02.015.
[28] Regaie G E. Temperature impact on operation and performance of Lake Manzala Engineered Wetland, Egypt[J]. Ain Shams Engineering Journal, 2010, 1(1):1-9. Doi:10.1016/j.asej.2010.09.001.
[29] Élisa F, Nicolardot B, Germon J C. Simultaneous effects of increasing levels of glucose and oxygen partial pressures on denitrification and dissimilatory nitrate reduction to ammonium in repacked soil cores[J]. European Journal of Soil Biology, 1998, 34(1):47-52.
[30] 李兆富, 吕宪国, 杨青, 等. 三江平原小叶章湿地土壤的CO2通量[J]. 南京林业大学学报(自然科学版),2003, 27(3):51-54. Doi:10.3969/j.issn.1000-2006.2003.03.012.
Li Z F, Lyu X G, Yang Q, et al. Soil surface CO2 fluxes of Deyeuxia angustifolia wetland in Sanjiang Plain[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2003, 27(3):51-54. Doi:10.3969/j.issn.1000-2006.2003.03.012.
[31] 马井泉. 人工湿地脱氮关键过程的作用机理研究[D]. 北京:中国水利水电科学研究院, 2006:43.
[32] 张晓龙, 李培英, 李萍, 等. 中国滨海湿地研究现状与展望[J]. 海洋科学进展, 2005, 23(1):87-95. Doi:10.3969/j.issn.1671-6647.2005.01.013.
Zhang X L, Li P Y, Li P, et al. Present conditions and prospects of study on coastal wetlands in China[J]. Advances in Marine Science, 2005, 23(1):87-95.
[33] 黄桂林, 何平, 侯盟. 中国河口湿地研究现状及展望[J]. 应用生态学报, 2006, 17(9):1751-1756.
Huang G L, He P, Hou M. Present status and prospects of estuarine wetland research in China[J].Chinese Journal of Applied Ecology, 2006, 17(9):1751-1756.
[34] 张兵, 王洋. 芦苇湿地的碳汇功能研究[J]. 现代农业科技, 2011(16):287-288. Doi:10.3969/j.issn.1007-5739.2011.16.200.
[35] 孟宪民. 湿地与全球环境变化[J]. 地理科学, 1999, 19(5):385-391. Doi:10.3969/j.issn.1000-0690.1999.05.001.
Meng X M. Wetlands and global environmental change[J]. Scientia Geographica Sinica, 1999, 19(5):385-391.
[36] Huygens D, Rütting T, Boeckx P, et al. Soil nitrogen conservation mechanisms in a pristine south Chilean Nothofagus forest ecosystem[J]. Soil Biology and Biochemistry, 2007, 39(10): 2448-2458. Doi:10.1016/j.soilbio.2007.04.013.
[37] Pett-Ridge J, Silver W L, Firestone M K. Redox fluctuations frame microbial community impacts on N-cyclingrates in a humid tropical soil[J]. Biogeochemistry, 2006,81(1):95-110. Doi:10.1007/s10533-006-9032-8.
[38] 徐明喜, 张银龙, 陆珺, 等. 芦苇收割对湖滨湿地土壤酶活性的影响[J]. 南京林业大学学报(自然科学版), 2011, 35(6):143-146. Doi:10.3969/j.issn.1000-2006.2011.06.029.
Xu M X, Zhang Y L, Lu J, et al. Effect of reed cutting on soil enzyme activities in riparian zone[J].Journal of Nanjing Forestry University(Natural Sciences Edition), 2011, 35(6):143-146. |