聚苯乙烯微球中荧光共振能量转移的研究

吴伟兵,王明亮,景宜,戴红旗,周小凡

南京林业大学学报(自然科学版) ›› 2011, Vol. 35 ›› Issue (02) : 83-87.

PDF(1402047 KB)
PDF(1402047 KB)
南京林业大学学报(自然科学版) ›› 2011, Vol. 35 ›› Issue (02) : 83-87. DOI: 10.3969/j.jssn.1000-2006.2011.02.018
研究论文

聚苯乙烯微球中荧光共振能量转移的研究

  • 吴伟兵1,王明亮2,景宜1,戴红旗1,周小凡1
作者信息 +

Study on fluorescence resonance energy transfer in polystyrene microspheres microspheres

  • WU Weibing1, WANG Mingliang2, JING Yi1 ,DAI Hongqi1, ZHOU Xiaofan1
Author information +
文章历史 +

摘要

采用分散共聚合法制备了单分散的负载有1, 8-萘酰亚胺染料的荧光微球。利用供体和受体染料间的荧光共振能量转移,荧光微球在激发供体染料时同时实现了供体和受体染料的双重荧光发射信号。结果表明:当微球中染料的浓度相对较低(质量分数小于02%)时,荧光共振能量就可以有效地发生转移。聚合过程中增加供体或受体染料的浓度都会提高能量转移效率,这是浓度增加使得染料分子间距离缩短造成的。通过调整微球中染料浓度可以获得不同能量转移效率、具有荧光编码信号的系列荧光微球。这类粒径均一的荧光微球在多元生物分析中有潜在的应用价值。

Abstract

A series of fluorescent monodisperse polystyrene microspheres labeled with 1, 8naphthamide dyes were prepared by dispersion copolymerization. Making use of fluorescence resonance energy transfer (FRET), the prepared microspheres showed both the fluorescence of the donor and acceptor dyes under the excitation wavelength of the donor dye. It is found that effective FRET occurs at a relatively low dye concentration and appropriate molar ratio of donor and acceptor. An increase in the dye concentration, which reduces the distance between the donor and acceptor, leads to more effective FRET in microspheres. By changing the dye concentrations, microspheres could show tuned fluorescent signals under a single wavelength excitation. This type of uniform fluorescent microspheres has potential application in bioassays.

引用本文

导出引用
吴伟兵,王明亮,景宜,戴红旗,周小凡. 聚苯乙烯微球中荧光共振能量转移的研究[J]. 南京林业大学学报(自然科学版). 2011, 35(02): 83-87 https://doi.org/10.3969/j.jssn.1000-2006.2011.02.018
WU Weibing, WANG Mingliang, JING Yi ,DAI Hongqi, ZHOU Xiaofan. Study on fluorescence resonance energy transfer in polystyrene microspheres microspheres[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2011, 35(02): 83-87 https://doi.org/10.3969/j.jssn.1000-2006.2011.02.018
中图分类号: Q632,TB34   

参考文献

[1]Dyba M, Hell S W. Photostability of a fluorescent marker under pulsed excitedstate depletion through stimulated emission[J]. Appl Opt, 2003, 42: 5123-5129.
[2]Galassi L. Wavelength dependence of the time course of fluorescence enhancement and photobleaching during irradiation of ethidium bromidestained nuclei[J]. Eur J Histochem, 2000, 44: 419-432.
[3]Fang X, Tan W. Imaging single fluorescent molecules at the interface of an optical fiber probe by evanescent wave excitation[J]. Anal Chem, 1999, 71: 3101-3105.
[4]Singer V L, Haugland R P. Specific binding assays using fluorescent microparticlescontg. cascade of fluorescent dyes giving high Stokes shift, for detecting wide variety of materials,e.g. proteins,nucleotide(s) and glycolipid(s):US,5573909[P]. 1996.
[5]Singer V L, Haugland R P, Brinkley J M, et al. Dipyrrometheneboron difluoride labeled fluorescent microparticles:US,5723218[P]. 1998.
[6]Roberts D V, Wittmershaus B P, Zhang Y Z, et al. Efficient excitation energy transfer among multiple dyes in polystyrene microspheres[J]. J Lumin, 1998, 79: 225-231.
[7]Johnson G E. Energy migration and transfer in molecularly doped polymers[J]. Macromolecules, 1980, 13: 145-152.
[8]Frster Th. Modern quantum chemistry: Part Ⅲ[M]. New York: Academic Press, 1965.
[9]van Der Meer B W, Coker G, Chen S Y. Resonance energy transfer: theory and data[M]. New York:VCH Publishers Inc, 1994.
[10]Gao Y Q, Marous R A. Theoretical investigation of the directional electron transfer in 4aminonaphthalimide compounds[J]. J Phys Chem A, 2002, 106: 1956-1960.
[11]Gan J, Song Q L, Hou X Y, et al. 1, 8Naphthalimides for nondoping OLEDs: the tunable emission color from blue, green to red[J]. J Photochem Photobiol A, 2004, 162: 399-406.
[12]Kolosov D, Adamovich V, Djurovich P, et al. 1,8Naphthalimides in Phosphorescent Organic LEDs: The Interplay between Dopant, Exciplex, and Host Emission[J]. J Am Chem Soc, 2002, 124: 9945-9954.
[13]Grabtchev I, Konstantinov T, Guittonneau S, et al. Photochemistry of some 1,8naphthalic anhydride derivatives[J]. Dyes Pigments,1997(35): 361-366.
[14]Grabtchev I, Konstantinov T. Synthesis of some polymerisable 1, 8naphthalimide derivatives for use as fluorescent brighteners[J]. Dyes Pigments, 1997(33): 197-203.
[15]Song J S, Tronc F, Winnik M A. Monodisperse, controlled micronsize dyelabeled polystyrene particles by twostage dispersion polymerization[J]. Polymer, 2006(47): 817-825.
[16]Konstantinova T N, Meallier P, Grabchev I. The synthesis of some 1, 8naphthalic anhydride derivatives as dyes for polymeric materials[J]. Dyes Pigments, 1993(22): 191-198.
[17]Wu Weibing, Wang Mingliang,Sun Yueming, et al. Fluorescent polystyrene microspheres with large Stokes shift by fluorescence resonance energy transfer[J]. J Phys Chem Solids, 2008(69): 76-82.
[18]Fung B K K, Stryer L. Surface density determination in membranes by fluorescence energy transfer[J]. Biochemistry, 1978, 17: 5241-5248.

基金

收稿日期:2010-01-26修回日期:2010-06-01 基金项目:江苏省制浆造纸科学与技术重点实验室开放课题(200907);国家自然科学基金项目(30972321)作者简介:吴伟兵(1982—),讲师,博士。Email: wbwu@yahoo.cn。引文格式:吴伟兵,王明亮,景宜,等. 聚苯乙烯微球中荧光共振能量转移的研究[J]. 南京林业大学学报:自然科学版,2011,35(2):83-87.

PDF(1402047 KB)

Accesses

Citation

Detail

段落导航
相关文章

/