南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (1): 122-130.doi: 10.12302/j.issn.1000-2006.202010026
马仕林1(), 曹鹏翔2, 张金池1,*(), 刘京1, 王金平1, 朱凌骏1, 袁钟鸣1
收稿日期:
2020-10-19
接受日期:
2021-06-07
出版日期:
2022-01-30
发布日期:
2022-02-09
通讯作者:
张金池
基金资助:
MA Shilin1(), CAO Pengxiang2, ZHANG Jinchi1,*(), LIU Jing1, WANG Jinping1, ZHU Lingjun1, YUAN Zhongming1
Received:
2020-10-19
Accepted:
2021-06-07
Online:
2022-01-30
Published:
2022-02-09
Contact:
ZHANG Jinchi
摘要:
【目的】探究盐胁迫下接种丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)对榉树(Zelkova serrata)的生长和光合特性的影响以及光响应模型的适用性,为利用菌根真菌技术提高植物在盐碱地中的生产力提供理论依据。【方法】以榉树幼苗为试验材料,设置不接种AMF(N)、接种摩西球囊霉(Glomus mosseae)1号(GM1)、接种摩西球囊霉2号(GM2)、接种扭形球囊霉(G. tortuosum,GO)4个处理组,进行盐胁迫与非盐胁迫(CK)处理。通过对比分析不同处理间的差异,探索盐胁迫下AMF对榉树生长及光合特性的影响,并评定5种光响应模型的适用性。【结果】①盐胁迫下GM1、GO处理的菌根侵染率显著降低;②盐胁迫显著降低了榉树苗高、地径净增长量,而GM1、GM2处理显著提高了盐胁迫下榉树的地径净增长量;③盐胁迫下,榉树净光合速率明显下降,3种接菌处理均能提升榉树叶片净光合速率、气孔限制值、水分利用效率,并降低胞间CO2浓度,其中GM2和GO较未接菌处理变化最大;④盐胁迫条件下只有以叶子飘模型拟合的平均决定系数(R2)高于0.900,其余4种模型各处理的R2均低于0.900。【结论】盐胁迫对榉树幼苗生长及光合特性有抑制作用;接种AMF可以促进植物生长,提升植物净光合速率,缓解盐胁迫对植物生长及光合特性的抑制作用。综合AMF对榉树生长和光合特性的影响,GM2较为突出,为盐碱地林业生产推荐选用菌株;5种光响应模型中,叶子飘模型的拟合效果最好,为探究盐胁迫下AMF对榉树净光合速率影响的最优模型。
中图分类号:
马仕林,曹鹏翔,张金池,等. 盐胁迫下AMF对榉树幼苗生长和光合特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 122-130.
MA Shilin, CAO Pengxiang, ZHANG Jinchi, LIU Jing, WANG Jinping, ZHU Lingjun, YUAN Zhongming. Effects of AMF on the growth and photosynthetic characteristics of Zelkova serrata under salt stress[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(1): 122-130.DOI: 10.12302/j.issn.1000-2006.202010026.
表1
光响应模型理论公式及参数设置"
模型名称 model name | 初始值 initial value | 限制范围 restricted range | 理论公式 theoretical formula |
---|---|---|---|
直角双曲线模型[ rectangle hyperbolic model | α=0.05,Pmax=15,Rd=2 | α≤1,Pmax≤20 | Pn(I)= |
非直角双曲线模型[ non-rectangle hyperbolic model | α=0.05,Pmax=15, θ=0.5,Rd=2 | α≤1,Pmax≤20,0≤θ≤1 | Pn(I)= |
指数模型[ exponential model | α=0.05,Pmax=15,Rd=2 | α≤1,Pmax≤20 | Pn(I)=Pmax(1- |
动力学模型[ kinetic model | Pmax=15,Ic=40,Km=400 | Pmax≤20 | Pn(I)= |
叶子飘模型[ Ye Zi-Piao model | α=0.01,β=0.000 1, γ=0.001,Rd=0.3 | α≤1,β≤1,γ≤1,Rd≤1.5 | Pn(I)=α |
表2
AMF对榉树生长影响及菌根侵染率"
处理 treatments | 苗高净增 长量/cm net height growth | 地径净增 长量/mm net basal diameter growth | 菌根侵染率/% mycorrhiza colonization rate |
---|---|---|---|
CK-N | 24.19±8.49 b | 2.98±1.73 ab | — |
CK-GM1 | 29.20±7.09 ab | 3.17±0.72 a | 94.44±6.36 a |
CK-GM2 | 35.53±5.37 a | 2.89±0.52 a | 86.11±2.41 ab |
CK-GO | 30.29±4.41 ab | 3.15±0.65 ab | 77.78±8.67 b |
Salt-N | 9.49±3.27 c | 1.83±0.40 c | — |
Salt-GM1 | 8.74±4.66 c | 2.73±0.44 ab | 77.78±2.41 b |
Salt-GM2 | 9.64±5.38 c | 2.77±0.64 ab | 78.89±2.93 b |
Salt-GO | 8.92±4.53 c | 2.08±0.27b c | 62.50±0.00 c |
Salt | <0.001*** | 0.002** | 0.088 |
AM | 0.059 | 0.290 | <0.001*** |
Salt×AM | 0.072 | 0.263 | 0.088 |
[1] |
MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol, 2008, 59:651-681.DOI: 10.1146/annurev.arplant.59.032607.092911.
doi: 10.1146/annurev.arplant.59.032607.092911 |
[2] | 岩学斌, 袁金海. 盐胁迫对植物生长的影响[J]. 安徽农业科学, 2019, 47(4):30-33. |
YAN X B YUAN J H. Effects of salt stress on plant growth[J]. J Anhui Agric Sci, 2019, 47(4):30-33.DOI: 10.3969/j.issn.0517-6611.2019.04.007.
doi: 10.3969/j.issn.0517-6611.2019.04.007 |
|
[3] | 尹蓉, 张倩茹, 江佰阳, 等. 盐碱地经济林栽培研究及展望[J]. 林业科技通讯, 2017(10):66-69. |
YIN R, ZHANG Q R, JIANG B Y, et al. Research and prospect on cultivation of economic forest in saline-alkali land[J]. Pract For Technol, 2017(10):66-69.DOI: 10.13456/j.cnki.lykt.2017.10.022.
doi: 10.13456/j.cnki.lykt.2017.10.022 |
|
[4] | 贾婷婷, 宋福强. 丛枝菌根提高植物耐盐性的研究进展[J]. 土壤通报, 2016, 47(6):1499-1505. |
JIA T T, SONG F Q. Research progress on mechanism of plant salt tolerance enhanced by arbuscular mycorrhizal[J]. Chin J Soil Sci, 2016, 47(6):1499-1505.DOI: 10.19336/j.cnki.trtb.2016.06.32.
doi: 10.19336/j.cnki.trtb.2016.06.32 |
|
[5] |
SMITH S E, READ D J. Mycorrhizal symbiosis[J]. Quarterly Review of Biology, 2008, 3(3):273-281. DOI: 10. 1097/00010694-198403000-00011.
doi: 10. 1097/00010694-198403000-00011 |
[6] | 吴亚胜, 王其传, 祁红英, 等. 育苗基质中添加丛枝菌根真菌菌剂对辣椒幼苗生长和光合参数的影响[J]. 蔬菜, 2018(7):12-16. |
WU Y S, WANG Q C, QI H Y, et al. Effects of arbuscular mycorrhizal fungi inoculum added in substrate on the growth and photosynthetic parameters of pepper seedlings[J]. Vegetables, 2018(7):12-16.DOI: 10.3969/j.issn.1001-8336.2018.07.003.
doi: 10.3969/j.issn.1001-8336.2018.07.003 |
|
[7] |
BORDE M, DUDHANE M, JITE P. Growth photosynthetic activity and antioxidant responses of mycorrhizal and non-mycorrhizal bajra (Pennisetum glaucum) crop under salinity stress condition[J]. Crop Prot, 2011, 30(3):265-271.DOI: 10.1016/j.cropro.2010.12.010.
doi: 10.1016/j.cropro.2010.12.010 |
[8] |
RUIZ-LOZANOJ M, PORCEL R, AZCÓN C, et al. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants:new challenges in physiological and molecular studies[J]. J Exp Bot, 2012, 63(11):4033-4044.DOI: 10.1093/jxb/ers126.
doi: 10.1093/jxb/ers126 |
[9] | HAMDIA M, SHADDAD M. Salt tolerance of crop plants[J]. J Stress Physiol Biochem, 2010, 6(3):64-90. |
[10] | 岳英男. 松嫩盐碱草地主要丛枝菌根真菌对植物耐盐性影响的研究[D]. 哈尔滨:东北林业大学, 2015. |
YUE Y N. Effects of arbuscular mycorrhizal fungi on the salt tolerance of plants in saline-alkaline grassland of Songnen plain[D]. Harbin:Northeast Forestry University, 2015. | |
[11] | 冯固, 李晓林, 张福锁, 等. 盐胁迫下丛枝菌根真菌对玉米水分和养分状况的影响[J]. 应用生态学报, 2000, 11(4):595-598. |
FENG G, LI X L, ZHANG F S, et al. Effect of AM fungi on water and nutrition status of corn plants under salt stress[J]. Chin J Appl Ecol, 2000, 11(4):595-598.DOI: 10.13287/j.1001-9332.2000.0144.
doi: 10.13287/j.1001-9332.2000.0144 |
|
[12] | 国靖, 汪贵斌, 曹福亮. 施肥对银杏叶片光合作用及营养元素质量分数的影响[J]. 浙江农林大学学报, 2016, 33(6):969-975. |
GUO J, WANG G B, CAO F L. Photosynjournal and nutrient content with fertilization for Ginkgo biloba leaves[J]. J Zhejiang A & F Univ, 2016, 33(6):969-975.DOI: 10.11833/j.issn.2095-0756.2016.06.007.
doi: 10.11833/j.issn.2095-0756.2016.06.007 |
|
[13] | 何海洋, 彭方仁, 张瑞, 等. 不同品种美国山核桃嫁接苗光合特性比较[J]. 南京林业大学学报(自然科学版), 2015(4):19-25. |
HE H Y, PENG F R, ZHANG R, et al. Photosynthetic characteristics of grafting plants of different pecan varieties[J]. J Nanjing For Univ (Nat Sci Ed), 2015(4):19-25.DOI: 10.3969/j.issn.1000-2006.2015.04.004.
doi: 10.3969/j.issn.1000-2006.2015.04.004 |
|
[14] |
LIU Q, ZHANG F M, CHEN J Q, et al. Water stress altered photosynjournal-vegetation index relationships for winter wheat[J]. Agronj, 2020, 112(4):2944-2955.DOI: 10.1002/agj2.20256.
doi: 10.1002/agj2.20256 |
[15] | 赵旺兔. 榉树生物学特性及园林应用研究[D]. 南京:南京林业大学, 2003. |
ZHAO W T. Studies on biological characters of Zelkova schneideriana and its practice for landscape design[D]. Nanjing:Nanjing Forestry University, 2003. | |
[16] | 曹容. 苏北沿海树种耐盐特性研究[D]. 南京:南京林业大学, 2015. |
CAO R. Study on salt tolerance characteristics of coastal tree species in northern Jiangsu[D]. Nanjing:Nanjing Forestry University, 2015. | |
[17] | 焦秀洁. NaCl胁迫下榉树生理生化特性的研究[D]. 南京:南京林业大学, 2009. |
JIAO X J. Study on the physiological and biochemical characteristics of Zelkova schneideriana under the NaCl stress[D]. Nanjing:Nanjing Forestry University, 2009. | |
[18] | 窦全琴, 焦秀洁, 张敏, 等. 土壤NaCl含量对榉树幼苗生理特性的影响[J]. 西北植物学报, 2009, 29(10):2063-2069. |
DOU Q Q, JIAO X J, ZHANG M, et al. Physiological response of Zelkova schneideriana seedlings in the soil under NaCl stress[J]. Acta Bot Boreali Occidentalia Sin, 2009, 29(10):2063-2069. | |
[19] | 夏尚光. NaCl胁迫对5个树种幼苗光合作用特性的影响[J]. 安徽林业科技, 2011, 37(1):23-28. |
XIA S G. Influence of salt stress on photosynthetic characteristics of five tree species seedlings[J]. Anhui For Sci Technol, 2011, 37(1):23-28. | |
[20] |
WANG J P, FU Z Y, REN Q, et al. Effects of arbuscular mycorrhizal fungi on growth,photosynjournal,and nutrient uptake of Zelkova serrata (Thumb.) Makino seedlings under salt stress[J]. Forests, 2019, 10(2):186.DOI: 10.3390/f10020186.
doi: 10.3390/f10020186 |
[21] |
REDDY A R, CHAITANYA K V, VIVEKANANDAN M. Drought-induced responses of photosynjournal and antioxidant metabolism in higher plants[J]. J Plant Physiol, 2004, 161(11):1189-1202.DOI: 10.1016/j.jplph.2004.01.013.
doi: 10.1016/j.jplph.2004.01.013 |
[22] | 刘润进, 李晓林. 丛枝菌根及其应用[M]. 北京: 科学出版社, 2000. |
LIU R J, LI X L. Arbuscular mycorrhiza and its application [M]. Beijing: Science Press, 2000. | |
[23] | 李英浩, 刘景辉, 赵宝平, 等. 干旱胁迫下腐殖酸肥料对燕麦光响应曲线的影响[J]. 中国农业大学学报, 2020, 25(11):34-44. |
LI Y H, LIU J H, ZHAO B P, et al. Effect of humic acid fertilizer on the light response curve of oat under drought stress[J]. J China Agric Univ, 2020, 25(11):34-44.DOI: 10.11841/j.issn.1007-4333.2020.11.04.
doi: 10.11841/j.issn.1007-4333.2020.11.04 |
|
[24] | 许中秋, 隋德宗, 谢寅峰, 等. 两个乌桕新品种苗木光合特性比较[J]. 南京林业大学学报(自然科学版), 2021, 45(1):93-100. |
XU Z Q, SUI D Z, XIE Y F, et al. Comparison of photosynthetic characteristics of two new Triadica sebifera varieties[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(1):93-100.DOI: 10.12302/j.issn.1000-2006.202003080.
doi: 10.12302/j.issn.1000-2006.202003080 |
|
[25] |
BALY E C C. The kinetics of photosynthesis[J]. Proceedings of the Royal Society ofLondon, 1935, 117(804):218-239. DOI: 10. 1038/134933a0
doi: 10. 1038/134933a0 |
[26] |
BASSMAN J H, ZWIER J C. Gas exchange characteristics of Populus trichocarpa,Populus deltoides and Populus trichocarpa×P. deltoides clones[J]. Tree Physiol, 1991, 8(2):145-159.DOI: 10.1093/treephys/8.2.145.
doi: 10.1093/treephys/8.2.145 |
[27] |
PRADO C H B A, DE MORAES J A P V. Photosynthetic capacity and specific leaf mass in twenty woody species of cerrado vegetation under field conditions[J]. Photosynthetica, 1997, 33(1):103-112.DOI: 10.1023/A:1022183423630.
doi: 10.1023/A:1022183423630 |
[28] |
BROADLEY M R, ESCOBAR-GUTIÉRREZ A J, BURNS A, et al. Nitrogen-limited growth of lettuce is associated with lower stomatal conductance[J]. New Phytol, 2001, 152(1):97-106.DOI: 10.1046/j.0028-646x.2001.00240.x.
doi: 10.1046/j.0028-646x.2001.00240.x |
[29] |
YE Z P. A new model for relationship between irradiance and the rate of photosynjournal in Oryza sativa[J]. Photosynthetica, 2007, 45(4):637-640.DOI: 10.1007/s11099-007-0110-5.
doi: 10.1007/s11099-007-0110-5 |
[30] |
PALUDAN-MÜLLER G, SAXE H, PEDERSEN L B, et al. Differences in salt sensitivity of four deciduous tree species to soil or airborne salt[J]. Physiol Plant, 2002, 114(2):223-230.DOI: 10.1034/j.1399-3054.2002.1140208.x.
doi: 10.1034/j.1399-3054.2002.1140208.x |
[31] |
ZHANG Z F, ZHANG J C, HUANG Y Q. Effects of arbuscular mycorrhizal fungi on the drought tolerance of Cyclobalanopsis glauca seedlings under greenhouse conditions[J]. New For, 2014, 45(4):545-556.DOI: 10.1007/s11056-014-9417-9.
doi: 10.1007/s11056-014-9417-9 |
[32] |
CHEN J, ZHANG H, ZHANG X, et al. Arbuscular mycorrhizal symbiosis alleviates salt stress in black locust through improved photosynjournal,water status,and K+/Na+ homeostasis[J]. Front Plant Sci, 2017, 8:1739.DOI: 10.3389/fpls.2017.01739.
doi: 10.3389/fpls.2017.01739 |
[33] |
COLLA G, ROUPHAEL Y, CARDARELLI M, et al. Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration[J]. Biol Fertil Soils, 2008, 44(3):501-509.DOI: 10.1007/s00374-007-0232-8.
doi: 10.1007/s00374-007-0232-8 |
[34] |
AMIRI R, NIKBAKHT A, ETEMADI N, et al. Nutritional status,essential oil changes and water-use efficiency of rose geranium in response to arbuscular mycorrhizal fungi and water deficiency stress[J]. Symbiosis, 2017, 73(1):15-25.DOI: 10.1007/s13199-016-0466-z.
doi: 10.1007/s13199-016-0466-z |
[35] | 杨康, 孙建茹, 王妍, 等. 入侵植物与本地植物互作对丛枝菌根真菌AMF侵染率的影响[J]. 菌物学报, 2019, 38(11):1938-1947. |
YANG K, SUN J R, WANG Y, et al. Effects of invasive plants interacting with native plants on colonization of arbuscular mycorrhizal fungi[J]. Mycosystema, 2019, 38(11):1938-1947.DOI: 10.13346/j.mycosystema.190191.
doi: 10.13346/j.mycosystema.190191 |
|
[36] |
GARG N, PANDEY R. Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L.(Mills.) genotypes[J]. Mycorrhiza, 2015, 25(3):165-180.DOI: 10.1007/s00572-014-0600-9.
doi: 10.1007/s00572-014-0600-9 |
[37] |
ESTRADA B, AROCA R, MAATHUIS F J, et al. Arbuscular mycorrhizal fungi native from a mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis[J]. Plant Cell Environ, 2013, 36(10):1771-1782.DOI: 10.1111/pce.12082.
doi: 10.1111/pce.12082 |
[38] | TARAFDAR J C, PANDE M. Effect of phosphorus,salinity and moisture on VAM fungal association in neem (Azadirachta indica Linn.)[J]. Symbiosis, 2002, 32(3):195-209. |
[39] |
JUNIPER S, ABBOTT L K. Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi[J]. Mycorrhiza, 2006, 16(5):371-379.DOI: 10.1007/s00572-006-0046-9.
doi: 10.1007/s00572-006-0046-9 |
[40] |
UPRETI K K, BHATT R M, PANNEERSELVAM P, et al. Morpho-physiological responses of grape rootstock ‘Dogridge’ to arbuscular mycorrhizal fungi inoculation under salinity stress[J]. Int J Fruit Sci, 2016, 16(2):191-209.DOI: 10.1080/15538362.2015.1111185.
doi: 10.1080/15538362.2015.1111185 |
[41] |
ZENG Y, GUO L P, CHEN B D, et al. Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants:current research status and prospectives[J]. Mycorrhiza, 2013, 23(4):253-265.DOI: 10.1007/s00572-013-0484-0.
doi: 10.1007/s00572-013-0484-0 |
[42] |
AKRAM M S, ASHRAF M. Exogenous application of potassium dihydrogen phosphate can alleviate the adverse effects of salt stress on sunflower[J]. J Plant Nutr, 2011, 34(7):1041-1057.DOI: 10.1080/01904167.2011.555585.
doi: 10.1080/01904167.2011.555585 |
[43] | 张美月, 陶秀娟, 樊建民, 等. 磷和丛枝菌根真菌对盐胁迫草莓光合作用的影响[J]. 河北农业大学学报, 2009, 32(4):71-75. |
ZHANG M Y, TAO X J, FAN J M, et al. Effect of phosphorus stress and AMF on photosynjournal in strawberry under salt stress[J]. J Agric Univ Hebei, 2009, 32(4):71-75.DOI: 10.3969/j.issn.1000-1573.2009.04.015.
doi: 10.3969/j.issn.1000-1573.2009.04.015 |
|
[44] | 崔令军, 刘瑜霞, 林健, 等. 丛枝菌根真菌对盐胁迫下桢楠光合生理的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(1):101-106. |
CUI L J, LIU Y X, LIN J, et al. Effects of AMF on photosynthetic characteristics of Phoebe zhennan under salt stress[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(1):101-106.DOI: 10.12302 /j.issn.1000-2006.202005007.
doi: 10.12302 /j.issn.1000-2006.202005007 |
|
[45] | 赵澍, 廖里平, 张宏武, 等. 盐胁迫对酸枣幼苗光合生理特性的影响[J]. 干旱区资源与环境, 2018, 32(5):149-153. |
ZHAO S, LIAO L P, ZHANG H W, et al. Impacts of salt stress on characteristics of photosynthetic of Zizyphus jujube seedlings[J]. J Arid Land Resour Environ, 2018, 32(5):149-153.DOI: 10.13448/j.cnki.jalre.2018.155.
doi: 10.13448/j.cnki.jalre.2018.155 |
|
[46] |
ZUCCARINI P, OKUROWSKA P. Effects of mycorrhizal colonization and fertilization on growth and photosynjournal of sweet basil under salt stress[J]. J Plant Nutr, 2008, 31(3):497-513.DOI: 10.1080/01904160801895027.
doi: 10.1080/01904160801895027 |
[47] | 王庆伟, 于大炮, 代力民, 等. 全球气候变化下植物水分利用效率研究进展[J]. 应用生态学报, 2010, 21(12):3255-3265. |
WANG Q W, YU D P, DAI L M, et al. Research progress in water use efficiency of plants under global climate change[J]. Chin J Appl Ecol, 2010, 21(12):3255-3265.DOI: 10.13287/j.1001-9332.2010.0440.
doi: 10.13287/j.1001-9332.2010.0440 |
|
[48] | 冷寒冰, 秦俊, 叶康, 等. 不同光照环境下荷花叶片光合光响应模型比较[J]. 应用生态学报, 2014, 25(10):2855-2860. |
LENG H B, QIN J, YE K, et al. Comparison of light response models of photosynjournal in Nelumbo nucifera leaves under different light conditions[J]. Chin J Appl Ecol, 2014, 25(10):2855-2860.DOI: 10.13287/j.1001-9332.20140801.010.
doi: 10.13287/j.1001-9332.20140801.010 |
|
[49] |
CHIU C H, CHOI J, PASZKOWSKI U. Independent signalling cues underpin arbuscular mycorrhizal symbiosis and large lateral root induction in rice[J]. New Phytol, 2018, 217(2):552-557.DOI: 10.1111/nph.14936.
doi: 10.1111/nph.14936 |
[50] |
WU Q S, ZOU Y N, HE X H. Contributions of arbuscular mycorrhizal fungi to growth,photosynjournal,root morphology and ionic balance of citrus seedlings under salt stress[J]. Acta Physiol Plant, 2010, 32(2):297-304.DOI: 10.1007/s11738-009-0407-z.
doi: 10.1007/s11738-009-0407-z |
[51] | 王秀伟, 毛子军. 7个光响应曲线模型对不同植物种的实用性[J]. 植物研究, 2009, 29(1):43-48. |
WANG X W, MAO Z J. Practicability of 7 light responsive curve models to different plant species[J]. Bull Bot Res, 2009, 29(1):43-48. | |
[52] | 叶子飘, 于强. 一个光合作用光响应新模型与传统模型的比较[J]. 沈阳农业大学学报, 2007, 38(6):771-775. |
YE Z P, YU Q. Comparison of a new model of light response of photosynjournal with traditional models[J]. J Shenyang Agric Univ, 2007, 38(6):771-775.DOI: 10.3969/j.issn.1000-1700.2007.06.001.
doi: 10.3969/j.issn.1000-1700.2007.06.001 |
|
[53] | 朱凌骏, 傅致远, 张金池, 等. 菌根真菌对榉树光合特性的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(6):121-127. |
ZHU L J, FU Z Y, ZHANG J C, et al. Effects of mycorrhizal fungi on photosynthetic characteristics of Zelkova serrata Thunb.[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(6):121-127.DOI: 10.3969/j.issn.1000-2006.201801031.
doi: 10.3969/j.issn.1000-2006.201801031 |
[1] | 杨皓, 刘超, 庄家尧, 张树同, 张文韬, 毛国豪. 不同载体菌肥对紫穗槐生长和光合特性及土壤养分的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 81-89. |
[2] | 王改萍, 章雷, 曹福亮, 丁延朋, 赵群, 赵慧琴, 王峥. 红蓝光质对银杏苗木生长生理特性及黄酮积累的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 105-112. |
[3] | 方静, 张书曼, 严善春, 武帅, 赵佳齐, 孟昭军. 两种丛枝菌根真菌复合接种对青山杨叶片抗美国白蛾的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 144-154. |
[4] | 赵晓龙, 沈家怡, 刘涛, 吴家胜, 胡渊渊. 当年和越年生香榧叶片的光合效率及抗氧化特性的季节性变化[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 45-50. |
[5] | 魏静, 谭星, 王昌盛, 闫瑞, 李林珂, 宁月, 刘芸. 引种美国红枫在两种紫色土区的生长和光合特性比较[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 97-105. |
[6] | 胡永恒, 张程, 万华琴, 朱咏莉, 李萍萍. 不同园林废弃物堆肥过程中化学性状变化及其对发芽指数的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 133-140. |
[7] | 梁文超, 步行, 罗思谦, 谢寅峰, 胡加玲, 张往祥. 施肥对增温促花后‘长寿冠’海棠叶片生长及光合特性的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 114-120. |
[8] | 贾瑞瑞, 祝艳艳, 杨秀莲, 付钰, 岳远征, 王良桂. 不同砧木对楸树嫁接苗生长及光合特性的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 97-106. |
[9] | 张银凤, 蔡洪月, 彭金根, 刘学军, 谢利娟, 张华, 王艳梅. 深圳城市公园不同栽植环境对毛棉杜鹃生长的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 197-204. |
[10] | 孔鑫, 王爱英, 郝广友, 宁秋蕊, 王淼, 殷笑寒, 周永姣. 水曲柳幼苗水力结构和光合生理对光强梯度变化的耦合响应[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 83-91. |
[11] | 李振双, 王倩, 朱媛, 杨富成, 梁俊峰, 陆俊锟. 外源信号物质对檀香幼苗生长和光合特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 271-278. |
[12] | 苑景淇, 于忠亮, 兰雪涵, 李成宏, 田年军, 杜凤国. 遮阴对濒危植物朝鲜崖柏光合特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 58-66. |
[13] | 田梦阳, 窦全琴, 谢寅峰, 汤文华, 季艳红. 4个薄壳山核桃品种的光合特性研究[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 67-74. |
[14] | 张成, 王小燕, 王贤荣, 段一凡, 张敏, 施大伟, 朱跃, 宋炎峰, 柴子涵, 李岚. 雄全异株桂花不同花期光合和内源激素的变化[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 75-80. |
[15] | 刘雅楠, 刘洋, 兰再平, 铁牛, 张梦弢, 王成德, 罗奇辉, 张晨. 不同灌溉方式对樟子松生长、光合特性及土壤水分运移的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 135-143. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||