崇明东滩湿地不同植物群落下沉积物中CO2和N2O的释放动态研究

印杰,汤逸帆,崔洪磊,韩建刚,李萍萍

南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (04) : 29-34.

PDF(1578306 KB)
PDF(1578306 KB)
南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (04) : 29-34. DOI: 10.3969/j.issn.1000-2006.2016.04.005
专题报道(Ⅱ)

崇明东滩湿地不同植物群落下沉积物中CO2和N2O的释放动态研究

  • 印 杰,汤逸帆,崔洪磊,韩建刚*,李萍萍*
作者信息 +

Emissions of CO2 and N2O in sediments with different vegetation types in Chongming Dongtan wetland

  • YIN Jie, TANG Yifan, CUI Honglei, HAN Jiangang*, LI Pingping*
Author information +
文章历史 +

摘要

湿地生态系统温室气体排放与植物群落之间的关系是近年来全球气候变化研究的热点。为揭示滨海湿地不同植物群落下沉积物中温室气体的释放规律,以崇明东滩为原型区域,采集光滩(无明显植物覆被)、互花米草、互花米草-芦苇共生及芦苇等4个采样带沉积物样品,观测CO2和N2O的释放特征。结果表明:互花米草、互花米草-芦苇、芦苇群落的沉积物中CO2累积释放量(1 066~1 105 mg/kg)显著高于光滩((846±22)mg/kg),但3种植物群落之间并无显著差异(P<0.05)。结合CO2累积释放量与沉积物中全氮含量(ω(TN))之间的显著正相关关系(P<0.05),可以认为,湿地沉积物全氮含量对CO2释放的影响可能比植物群落大。相比较而言,芦苇群落下沉积物中N2O累积释放量为(0.41±0.01)mg/kg,明显高于互花米草-芦苇群落的(0.32±0.01)mg/kg、互花米草群落的(0.23±0.01)mg/kg和光滩的(0.21±0.00)mg/kg。这表明,芦苇群落有利于沉积物中N2O的产生或释放。未来对滨海湿地N2O排放进行调控与评估过程中,芦苇及其生境的作用应当给予重点关注。

Abstract

The relationship of greenhouse gases emissions and vegetation types in wetlands is becoming a hotspot with global climate changes. The present study aims to characterize the emissions of greenhouse gases in sediments with different vegetations community in typical coastal wetlands. Sediment samples were collected from three vegetation communities of Phragmites australis, Spartina alterniflora, the intergrowth area of the two species and mudflat(no vegetation)in Chongming Dongtan wetland. The samples were incubated for 60 days and measured the releases of CO2 and N2O. The results showed that the total emissions of CO2 in sediments under vegetations community(1 066-1 105 mg/kg)were much higher than those in mudflat((846±22)mg/kg)(P<0.05). No significant difference was found among 3 vegetation communities. Combined with the significant positive correlation between the total emissions of CO2 and ω(TN)in sediments(P<0.05), the fact that can be deduced that ω(TN)in sediments rather than under the vegetation types community acts as a key role in control of CO2 emissions from sediments. In contrast, the total emissions of N2O in sediments with Ph. australis((0.41±0.01)mg/kg)were substantially higher than that under S. alterniflora ((0.23±0.01)mg/kg), the intergrowth area of the two species((0.32±0.01)mg/kg)and mudflat((0.21±0)mg/kg), respectively. This suggested that Ph. australis possibly facilitates the production and emissions of N2O in sediment in the wetland. It is worth further studying on the roles of Ph. australis for the control and evaluation of N2O emissions in a coastal wetland.

引用本文

导出引用
印杰,汤逸帆,崔洪磊,韩建刚,李萍萍. 崇明东滩湿地不同植物群落下沉积物中CO2和N2O的释放动态研究[J]. 南京林业大学学报(自然科学版). 2016, 40(04): 29-34 https://doi.org/10.3969/j.issn.1000-2006.2016.04.005
YIN Jie, TANG Yifan, CUI Honglei, HAN Jiangang, LI Pingping. Emissions of CO2 and N2O in sediments with different vegetation types in Chongming Dongtan wetland[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2016, 40(04): 29-34 https://doi.org/10.3969/j.issn.1000-2006.2016.04.005
中图分类号: X53   

参考文献

[1] IPCC Fourth Assessment Report of Working Group. Climate change 2007: the physical science basis[M]. Cambridge: Cambridge University Press, 2007.
[2] 祁秋艳, 杨淑慧, 仲启铖, 等. 崇明东滩芦苇光合特征对模拟增温的响应[J]. 华东师范大学学报(自然科学版), 2012(6):29-38. Doi:10.3969/j.issn.1000-5641.2012.06.004. Qi Q Y, Yang S H, Zhong Q C, et al. Responses of photosynthetic characteristics of Phragmites australis to simulated temperature enhancement in Eastern Chongming Island, China[J]. Journal of East China Normal University(Natural Science), 2012(6):29-38.
[3] 窦立春. 低碳价值观及其实践路径[J]. 南京林业大学学报(人文社会科学版), 2011, 11(2):18-20. Doi:10.3969/j.issn.1671-1165.2011.02.006.
[4] Wang K Y, Kellomakis L K, Laitinen K. Acclimation of photosynthetic parameters in Scots pine after three years exposure to elevated temperature and CO2[J]. Agricultural and Forest Meteorology, 1996,82(1-4):195-217.
[5] 王淑琼, 王瀚强, 方燕, 等. 崇明岛滨海湿地植物群落固碳能力[J]. 生态学杂志, 2014, 33(4):915-921. Wang S Q, Wang H Q, Fang Y, et al. Ability of plant carbon fixation in the coastal wetland of Chongming Island[J]. Chinese Journal of Ecology, 2014, 33(4):915-921.
[6] 卢妍, 宋长春, 王毅勇, 等. 植物对沼泽湿地生态系统CO2和CH4排放的影响[J]. 西北植物学报, 2007,27(11):2306-2313. Lu Y, Song C C, Wang Y Y, et al. Influence of plants on CO2 and CH4 emission in wetland ecosystem[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(11):2306-2313.
[7] Ruser R, Flessa H, Russow R, et al. Emission of N2O, N2 and CO2 from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting[J]. Soil Biology and Biochemistry, 2006, 38(2): 263-274. Doi:10.1016/j.soilbio.2005.05.005.
[8] Rückauf U, Augustin J, Russow R, et al. Nitrate removal from drained and reflooded fensoils affected by soil N transformation processes and plant uptake[J]. Soil Biology & Biochemistry, 2004, 36:77-90.
[9] Morley N, Baggs E M. Carbon and oxygen controls on N2O and N2 production during nitrate reduction[J]. Soil Biology & Biochemistry, 2010, 42:1864-1871.
[10] 朱鲲杰, 谢文霞, 刘文龙, 等. 植物影响陆地生态系统N2O产生和释放的研究进展[J]. 地球与环境,2014, 42(3):456-463. Zhu K J, Xie W X, Liu W L, et al. Progress in research on plant effect on N2O emission flux from terrestrial ecosystem[J]. Earth and Environment, 2014, 42(3):456-463.
[11] 李彬波,曾科,李瑞,等. 作物生长对土壤N2O排放影响的研究进展[J]. 土壤通报,2015,46(4):1003-1010. Li B B, Zeng K, Li R, et al. A review on soil N2O emission as influenced by crop growth[J]. Chinese Journal of Soil Science, 2015,46(4):1003-1010.
[12] Hopkinson C S, Cai W J, Hi X P. Carbon sequestration in wetland dominated coastal systems: a global sink of rapidly diminishing magnitude[J]. Current Opinion in Environmental Sustainability,2012,4(2):186-194. Doi:10.1016/j.cosust.2012.03.005.
[13] Groffman P M, Gold A J, Addy K. Nitrous oxide production in riparian zones and its importance to national emission inventories[J]. Chemosphere: Global Change Science,2000,2(3):291-299.
[14] Yu Z, Li Y, Deng H, et al. Effect of Scirpus mariqueter on nitrous oxide emissions from a subtropical monsoon estuarine wetland[J]. Journal of Geophysical Research, 2012, 117:213-223. Doi:10.1029/2011JG001850.
[15] 胡泓, 王东启, 李杨杰, 等. 崇明东滩芦苇湿地温室气体排放通量及其影响因素[J]. 环境科学研究,2014, 27(1):43-50. Doi:10.13198/j.issn.1001-6929.2014.01.07. Hu H, Wang D Q, Li Y J, et al. Greenhouse gases fluxes at Chongming Dongtan Phragmites australis wetland and the influencing factors[J]. Research of Environmental Sciences, 2014, 27(1):43-50.
[16] 陆健健.中国滨海湿地的分类[J].环境导报,1996(1):1-2.
[17] 袁兴中, 陆健健, 刘红. 河口盐沼植物对大型底栖动物群落的影响[J]. 生态学报, 2002, 22(3):326-333. Yuan X Z, Lu J J, Liu H. Influence of characteristics of scirpus mariqueter community on the benthic macro-invertebrate in a salt marsh of the changjiang estuary[J]. Acta Ecologica Sinica, 2002, 22(3):326-333.
[18] 鲍士旦. 土壤农化分析[M]. 2版.北京:中国农业出版社,2000:81-83.
[19] 崔洪磊, 徐莎, 印杰, 等. 植物群落收割对滨海湿地沉积物中CO2和N2O释放的影响[J]. 环境科学研究,2015, 28(8):1200-1208. Doi:10.13198/j.issn.1001-6929.2015.08.04. Cui H L, Xu S, Yin J, et al. Effects of vegetation harvest on CO2 and N2O emissions from sediments in a typical coastal wetland[J]. Research of Environmental Sciences, 2015, 28(8):1200-1208.
[20] Kandeler E, Gerber H. Short-term assay of soil urease activity using colorimetric determination of ammonium[J].Biology & Fertility of Soils, 1988, 6(1):68-72. Doi:10.1007/BF00257924.
[21] 关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
[22] 李勇,赵全升,张芳,等. 崇明东滩芦苇湿地氧化亚氮排放[J]. 环境科学学报,2010,30(12):2526-2534.
[23] 谢文霞,赵全升,张芳,等. 胶州湾河口湿地秋冬季N2O气体排放通量特征[J]. 地理科学,2011,31(4):464-469.
[24] 韩建刚, 曹雪. 典型滨海湿地干湿交替过程氮素动态的模拟研究[J]. 环境科学, 2013, 34(6):2383-2389. Han J G, Cao X. Effects of drying-rewetting alternation on nitrogen dynamics in a typical coastal wetland: a simulation study[J]. Environmental Science, 2013, 34(6):2383-2389.
[25] 韩建刚, 郑伟, 吴春笃, 等. 湿地硝酸还原酶活性变化的干湿交替驱动机制[J]. 环境科学与技术, 2011,34(5):7-9,76. Doi:10.3969/j.issn.1003-6504.2011.05.002. Han J G, Zheng W, Wu C D, et al. Response of nitrate reductase activity to alternation of drying and rewetting for sediment from a reed wetland[J]. Environmental Science & Technology, 2011, 34(5):7-9,76. Doi:10.3969/j.issn.1003-6504.2011.05.002.
[26] 郑伟,黄卫红,韩建刚. 崇明东滩湿地沉积物反硝化酶活性对干湿交替过程的响应研究[J]. 土壤通报,2013,44(1):122-127. Zheng W, Huang W H, Han J G. Denitrifying enzyme activities under alternation of drying and rewetting for wetland sediments in Chongming East Intertidal Flat[J]. Chinese Journal of Soil Science, 2013,44(1):122-127.
[27] Christoph S S, David J R, Elizabeth M B. Constraining the conditions conducive to dissimilatory nitrate reduction to ammonium in temperate arable soils[J]. Soil Biology & Biochemistry,2011,43:1607-1611. Doi:10.1016/j.soilbio.2011.02.015.
[28] Regaie G E. Temperature impact on operation and performance of Lake Manzala Engineered Wetland, Egypt[J]. Ain Shams Engineering Journal, 2010, 1(1):1-9. Doi:10.1016/j.asej.2010.09.001.
[29] Élisa F, Nicolardot B, Germon J C. Simultaneous effects of increasing levels of glucose and oxygen partial pressures on denitrification and dissimilatory nitrate reduction to ammonium in repacked soil cores[J]. European Journal of Soil Biology, 1998, 34(1):47-52.
[30] 李兆富, 吕宪国, 杨青, 等. 三江平原小叶章湿地土壤的CO2通量[J]. 南京林业大学学报(自然科学版),2003, 27(3):51-54. Doi:10.3969/j.issn.1000-2006.2003.03.012. Li Z F, Lyu X G, Yang Q, et al. Soil surface CO2 fluxes of Deyeuxia angustifolia wetland in Sanjiang Plain[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2003, 27(3):51-54. Doi:10.3969/j.issn.1000-2006.2003.03.012.
[31] 马井泉. 人工湿地脱氮关键过程的作用机理研究[D]. 北京:中国水利水电科学研究院, 2006:43.
[32] 张晓龙, 李培英, 李萍, 等. 中国滨海湿地研究现状与展望[J]. 海洋科学进展, 2005, 23(1):87-95. Doi:10.3969/j.issn.1671-6647.2005.01.013. Zhang X L, Li P Y, Li P, et al. Present conditions and prospects of study on coastal wetlands in China[J]. Advances in Marine Science, 2005, 23(1):87-95.
[33] 黄桂林, 何平, 侯盟. 中国河口湿地研究现状及展望[J]. 应用生态学报, 2006, 17(9):1751-1756. Huang G L, He P, Hou M. Present status and prospects of estuarine wetland research in China[J].Chinese Journal of Applied Ecology, 2006, 17(9):1751-1756.
[34] 张兵, 王洋. 芦苇湿地的碳汇功能研究[J]. 现代农业科技, 2011(16):287-288. Doi:10.3969/j.issn.1007-5739.2011.16.200.
[35] 孟宪民. 湿地与全球环境变化[J]. 地理科学, 1999, 19(5):385-391. Doi:10.3969/j.issn.1000-0690.1999.05.001. Meng X M. Wetlands and global environmental change[J]. Scientia Geographica Sinica, 1999, 19(5):385-391.
[36] Huygens D, Rütting T, Boeckx P, et al. Soil nitrogen conservation mechanisms in a pristine south Chilean Nothofagus forest ecosystem[J]. Soil Biology and Biochemistry, 2007, 39(10): 2448-2458. Doi:10.1016/j.soilbio.2007.04.013.
[37] Pett-Ridge J, Silver W L, Firestone M K. Redox fluctuations frame microbial community impacts on N-cyclingrates in a humid tropical soil[J]. Biogeochemistry, 2006,81(1):95-110. Doi:10.1007/s10533-006-9032-8.
[38] 徐明喜, 张银龙, 陆珺, 等. 芦苇收割对湖滨湿地土壤酶活性的影响[J]. 南京林业大学学报(自然科学版), 2011, 35(6):143-146. Doi:10.3969/j.issn.1000-2006.2011.06.029. Xu M X, Zhang Y L, Lu J, et al. Effect of reed cutting on soil enzyme activities in riparian zone[J].Journal of Nanjing Forestry University(Natural Sciences Edition), 2011, 35(6):143-146.

基金

收稿日期:2015-11-23 修回日期:2016-01-11
基金项目:国家自然科学基金项目(41375149); 国家林业公益性行业科研专项项目(201404305); 江苏省“青蓝工程”资助项目(苏教师[2016]15号); 江苏高校优势学科建设工程资助项目(PAPD)
第一作者:印杰(1599167430@qq.com), 主要负责CO2测定实验及相关内容写作; 汤逸帆(422523942@qq.com),主要负责N2O测定实验及相关内容写作。*通信作者:韩建刚(hanjiangang76@126.com),教授,指导论文的资料整理,文字修改; 李萍萍(lipingping@ujs.edu.cn),教授,指导论文的选题、结构组织与对策修改。
引文格式:印杰,汤逸帆,崔洪磊,等. 崇明东滩湿地不同植物群落下沉积物中CO2和N2O的释放动态研究[J]. 南京林业大学学报(自然科学版),2016,40(4):29-34.

PDF(1578306 KB)

Accesses

Citation

Detail

段落导航
相关文章

/