Advances in molecular breeding of fruit trees

YUAN Zhaohe, CHEN Lide, ZHANG Xinhui, ZHAO Yujie

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (4) : 1-12.

PDF(1565 KB)
PDF(1565 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (4) : 1-12. DOI: 10.12302/i.issn.1000-2006.202102015

Advances in molecular breeding of fruit trees

Author information +
History +

Abstract

China is the largest country in the fruit tree industry, with abundant resources of fruit tree varieties. With the change of market demand and natural environment, some new problems and new demands need to be solved in China’s fruit industry. It is necessary to study deeply, analyze comprehensively the present situation, and discuss the future development direction of fruit tree breeding in China. Molecular breeding technologies such as genetically modified technology and molecular marker technology have the advantages of a short cycle, high efficiency, and high precision in directional breeding. These technologies are important methods for modern fruit tree breeding research, and can be applied into fruit tree breeding to improve the quality of fruit and enhance the competitiveness of the industry. Based on the problems such as a single variety, declining quality, and increasing pests and diseases, this paper reviewed the application, disadvantages and suggestions of modern molecular biology techniques in fruit tree breeding, including improving the quality-related traits such as color, shape, size, flavor, texture, smell and functional substances, as well as the abi-lity of resistance to abiotic stresses such as drought, low temperature, high temperature and biotic stresses such as diseases and insect pests to provide references for fruit tree breeding. It is considered that the molecular breeding of fruit trees in China should meet the needs of different populations and different uses, and cultivate diversified and personalized varieties. We should take high quality, green and safety as the development direction, and cultivate varieties with good resistance and suitable for the labor-saving cultivation. It is necessary to make full use of the abundant genetic information resources in the whole genome of fruit trees, and comprehensively analyze the gene functions at the genome or system levels, so as to reveal the molecular mechanisms of fruit tree growth and development, environmental response interaction network, metabolism and so on, and lay the foundation for directional breeding of fruit trees. Meanwhile, modern biology and other advanced technologies should be comprehensively used to improve breeding efficiency and gradually shorten the breeding cycle.

Key words

fruit tree / quality breeding / resistance breeding / molecular breeding

Cite this article

Download Citations
YUAN Zhaohe , CHEN Lide , ZHANG Xinhui , et al. Advances in molecular breeding of fruit trees[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(4): 1-12 https://doi.org/10.12302/i.issn.1000-2006.202102015

References

[1]
邓秀新, 束怀瑞, 郝玉金, 等. 果树学科百年发展回顾[J]. 农学学报, 2018, 8(1):24-34.
DENG X X, SHU H R, HAO Y J, et al. Review on the centennial development of pomology in China[J]. J Agric, 2018, 8(1):24-34.
[2]
邓秀新. 关于我国水果产业发展若干问题的思考[J]. 果树学报, 2021, 38(1):121-127.
DENG X X. Thoughts on the development of China’s fruit industry[J]. J Fruit Sci, 2021, 38(1):121-127.DOI: 10.13925/j.cnki.gsxb.20200509.
[3]
龙兴桂, 冯殿齐, 苑兆和. 中国现代果树栽培[M]. 北京: 中国农业出版社, 2020.
LONG X G, FENG D Q, YUAN Z H. Modern fruit tree cultivation in China[M]. Beijing: Chinese Agriculture Press, 2020.
[4]
陈学森, 李秀根, 毛志泉, 等. 新种质创造支撑果品产业升级:红肉苹果和‘库尔勒香梨’种质资源利用以及‘红富士’芽变选种案例分析[J]. 果树学报, 2021, 38(1):128-141.
CHEN X S, LI X G, MAO Z Q, et al. Fruit industry upgrading supported by new germplasm creation:case study on the utilization of germplasm resources of red-fleshed apple and ‘Kuerlexiangli’ pear and the sports selection of ‘Red Fuji’[J]. J Fruit Sci, 2021, 38(1):128-141.DOI: 10.13925/j.cnki.gsxb.20200300.
[5]
邓秀新, 王力荣, 李绍华, 等. 果树育种40年回顾与展望[J]. 果树学报, 2019, 36(4):514-520.
DENG X X, WANG L R, LI S H, et al. Retrospection and prospect of fruit breeding for last four de-cades in China[J]. J Fruit Sci, 2019, 36(4):514-520.DOI: 10.13925/j.cnki.gsxb.20190094.
[6]
YUE J, LIU J, TANG W, et al. Kiwifruit genome database (KGD):a comprehensive resource for kiwifruit genomics[J]. Hortic Res, 2020, 7:117.DOI: 10.1038/s41438-020-0338-9.
[7]
李桂芬, 杨向晖, 乔燕春, 等. 枇杷属植物种间及近缘属杂交亲和性研究[J]. 园艺学报, 2016, 43(6):1069-1078.
LI G F, YANG X H, QIAO Y C, et al. Study on interspecific and intergeneric hybridization compatibility of Eriobotrya and related genera[J]. Acta Hortic Sin, 2016, 43(6):1069-1078.DOI: 10.16420/j.issn.0513-353x.2016-0215.
[8]
赵丹, 王飞, 赵秀明, 等. 柿属部分品种杂交亲和性以及结实性的研究[J]. 园艺学报, 2012, 39(11):2229-2237.
ZHAO D, WANG F, ZHAO X M, et al. Studies of cross compatibility and fecundity on part of Diospyros[J]. Acta Hortic Sin, 2012, 39(11):2229-2237.DOI: 10.16420/j.issn.0513-353x.2012.11.017.
[9]
JIA H M, JIA H J, CAI Q L, et al. The red bayberry genome and genetic basis of sex determination[J]. Plant Biotechnol J, 2019, 17(2):397-409.DOI: 10.1111/pbi.12985.
[10]
高源, 刘凤之, 曹玉芬, 等. 苹果属种质资源亲缘关系的SSR分析[J]. 果树学报, 2007, 24(2):129-134.
GAO Y, LIU F Z, CAO Y F, et al. Analysis of genetic relationship for Malus germplasm resources by SSR markers[J]. J Fruit Sci, 2007, 24(2):129-134.
[11]
韩振诚, 潘学军, 安华明, 等. 贵州柿属植物种质资源遗传多样性的SRAP分析[J]. 果树学报, 2015, 32(5):751-762.
HAN Z C, PAN X J, AN H M, et al. Genetic diversity of Diospyros Linn.in Guizhou based on SRAP[J]. J Fruit Sci, 2015, 32(5):751-762.DOI: 10.13925/j.cnki.gsxb.20150171.
[12]
钟敏, 廖光联, 李章云, 等. 野生毛花猕猴桃雄花花器性状及SSR遗传多样性研究[J]. 果树学报, 2018, 35(6):658-667.
ZHONG M, LIAO G L, LI Z Y, et al. Genetic diversity of wild male kiwifruit (Actinidia eriantha Benth.) germplasms based on SSR and morphological markers[J]. J Fruit Sci, 2018, 35(6):658-667.DOI: 10.13925/j.cnki.gsxb.20170514.
[13]
夏溪, 奉树成, 张春英. 新型分子生物学技术在花卉定向育种中的应用进展[J]. 南京林业大学学报(自然科学版), 2019, 43(6):173-180.
XIA X, FENG S C, ZHANG C Y. Advance in flower directive breeding using new molecular biology techniques[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(6):173-180.DOI: 10.3969/j.issn.1000-2006.201902014.
[14]
DING Y, LI H, CHEN L L, et al. Recent advances in genome editing using CRISPR/Cas9[J]. Front Plant Sci, 2016, 7:703.DOI: 10.3389/fpls.2016.00703.
[15]
WEI Z Z, SUN Z Z, CUI B B, et al. Transcriptome analysis of colored Calla lily (Zantedeschia rehmannii Engl.) by Illumina sequencing:de novo assembly,annotation and EST-SSR marker development[J]. Peer J, 2016, 4:e2378.DOI: 10.7717/peerj.2378.
[16]
CHEN M X, SUN C, ZHANG K L, et al. SWATH-MS-facilitated proteomic profiling of fruit skin between Fuji apple and a red skin bud sport mutant[J]. BMC Plant Biol, 2019, 19(1):445.DOI: 10.1186/s12870-019-2018-1.
[17]
ZHAO G, LIAN Q, ZHANG Z, et al. A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits[J]. Nat Genet, 2019, 51(11):1607-1615.DOI: 10.1038/s41588-019-0522-8.
[18]
DIXON R A, STEELE C L. Flavonoids and isoflavonoids:a gold mine for metabolic engineering[J]. Trends Plant Sci, 1999, 4(10):394-400.DOI: 10.1016/s1360-1385(99)01471-5.
[19]
PETRONI K, TONELLI C. Recent advances on the regulation of anthocyanin synjournal in reproductive organs[J]. Plant Sci, 2011, 181(3):219-229.DOI: 10.1016/j.plantsci.2011.05.009.
[20]
TAKOS A M, JAFFÉ F W, JACOB S R, et al. Light-induced expression of a MYB gene regulates anthocyanin biosynjournal in red apples[J]. Plant Physiol, 2006, 142(3):1216-1232.DOI: 10.1104/pp.106.088104.
[21]
ESPLEY R V, HELLENS R P, PUTTERILL J, et al. Red colouration in apple fruit is due to the activity of the MYB transcription factor,MdMYB10[J]. Plant J, 2007, 49(3):414-427.DOI: 10.1111/j.1365-313x.2006.02964.x.
[22]
BAN Y, HONDA C, HATSUYAMA Y, et al. Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin[J]. Plant Cell Physiol, 2007, 48(7):958-970.DOI: 10.1093/pcp/pcm066.
[23]
KOBAYASHI S. Retrotransposon-induced mutations in grape skin color[J]. Science, 2004, 304(5673):982.DOI: 10.1126/science.1095011.
[24]
DELUC L, BARRIEU F, MARCHIVE C, et al. Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway[J]. Plant Physiol, 2006, 140(2):499-511.DOI: 10.1104/pp.105.067231.
[25]
DELUC L, BOGS J, WALKER A R, et al. The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynjournal in developing grape berries[J]. Plant Physiol, 2008, 147(4):2041-2053.DOI: 10.1104/pp.108.118919.
[26]
RAHIM M A, BUSATTO N, TRAINOTTI L. Regulation of anthocyanin biosynjournal in peach fruits[J]. Planta, 2014, 240(5):913-929.DOI: 10.1007/s00425-014-2078-2.
[27]
YAO G, MING M, ALLAN A C, et al. Map-based cloning of the pear gene MYB114 identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynjournal[J]. Plant J, 2017, 92(3):437-451.DOI: 10.1111/tpj.13666.
[28]
VIMOLMANGKANG S, HAN Y, WEI G, et al. An apple MYB transcription factor,MdMYB3,is involved in regulation of anthocyanin biosynjournal and flower development[J]. BMC Plant Biol, 2013, 13:176.DOI: 10.1186/1471-2229-13-176.
[29]
CHAGNÉ D, KUI L W, ESPLEY R V, et al. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes[J]. Plant Physiol, 2013, 161(1):225-239.DOI: 10.1104/pp.112.206771.
[30]
SHEN X, ZHAO K, LIU L, et al. A role for PacMYBA in ABA-regulated anthocyanin biosynjournal in red-colored sweet cherry cv.Hong Deng (Prunus avium L.)[J]. Plant Cell Physiol, 2014, 55(5):862-880.DOI: 10.1093/pcp/pcu013.
[31]
FENG S, WANG Y, YANG S, et al. Anthocyanin biosynjournal in pears is regulated by a R2R3-MYB transcription factor PyMYB10[J]. Planta, 2010, 232(1):245-255.DOI: 10.1007/s00425-010-1170-5.
[32]
DIRLEWANGER E, PRONIER V, PARVERY C, et al. Genetic linkage map of peach [Prunus persica (L.) Batsch]using morphological and molecular markers[J]. Theor Appl Genet, 1998, 97(5/6):888-895.DOI: 10.1007/s001220050969.
[33]
DIRLEWANGER E, COSSON P, BOUDEHRI K, et al. Development of a second-generation genetic linkage map for peach[Prunus persica (L.) Batsch]and characterization of morphological traits affecting flower and fruit[J]. Tree Genet Genomes, 2006, 3(1):1-13.DOI: 10.1007/s11295-006-0053-1.
[34]
SU L, BASSA C, AUDRAN C, et al. The auxin Sl-IAA17 transcriptional repressor controls fruit size via the regulation of endoreduplication-related cell expansion[J]. Plant Cell Physiol, 2014, 55(11):1969-1976.DOI: 10.1093/pcp/pcu124.
[35]
TELLO J, TORRES-PÉREZ R, GRIMPLET J, et al. Polymorphisms and minihaplotypes in the VvNAC26 gene associate with berry size variation in grapevine[J]. BMC Plant Biol, 2015, 15:253.DOI: 10.1186/s12870-015-0622-2.
[36]
QI X L, LIU C L, SONG L L, et al. PaCYP78A9,a cytochrome P450,regulates fruit size in sweet cherry (Prunus avium L.)[J]. Front Plant Sci, 2017, 8:2076.DOI: 10.3389/fpls.2017.02076.
[37]
ROSYARA U R BINK M C A M WEG E, et al. Fruit size QTL identification and the prediction of parental QTL genotypes and breeding values in multiple pedigreed populations of sweet cherry[J]. Mol Breed, 2013, 32(4):875-887.DOI: 10.1007/s11032-013-9916-y.
[38]
DE FRANCESCHI P, STEGMEIR T, CABRERA A, et al. Cell number regulator genes in Prunus provide candidate genes for the control of fruit size in sweet and sour cherry[J]. Mol Breed, 2013, 32:311-326.DOI: 10.1007/s11032-013-9872-6.
[39]
ETIENNE A, GÉNARD M, LOBIT P, et al. What controls fleshy fruit acidity?A review of malate and citrate accumulation in fruit cells[J]. J Exp Bot, 2013, 64(6):1451-1469.DOI: 10.1093/jxb/ert035.
[40]
LI S J, YIN X R, XIE X L, et al. The Citrus transcription factor,CitERF13,regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump,CitVHA-c4[J]. Sci Rep, 2016, 6:20151.DOI: 10.1038/srep20151.
[41]
HU D G, SUN C H, MA Q J, et al. MdMYB1 regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples[J]. Plant Physiol, 2016, 170(3):1315-1330.DOI: 10.1104/pp.15.01333.
[42]
HU D G, SUN C H, SUN M H, et al. MdSOS2L1 phosphorylates MdVHA-B1 to modulate malate accumulation in response to salinity in apple[J]. Plant Cell Rep, 2016, 35(3):705-718.DOI: 10.1007/s00299-015-1914-6.
[43]
WANG Y P, CHEN J W, FENG J J, et al. Overexpression of a loquat (Eriobotrya japonica Lindl.) vacuolar invertase affects sucrose levels and growth[J]. Plant Cell Tissue Organ Cult (PCTOC), 2015, 123(1):99-108.DOI: 10.1007/s11240-015-0817-0.
[44]
NISHAWY E, SUN X H, EWAS M, et al. Overexpression of Citrus grandis DREB gene in tomato affects fruit size and accumulation of primary metabolites[J]. Sci Hortic, 2015, 192:460-467.DOI: 10.1016/j.scienta.2015.06.035.
[45]
LI S J, YIN X R, WANG W L, et al. Citrus CitNAC62 cooperates with CitWRKY1 to participate in citric acid degradation via up-regulation of CitAco3[J]. J Exp Bot, 2017, 68(13):3419-3426.DOI: 10.1093/jxb/erx187.
[46]
HU D G, LI Y Y, ZHANG Q Y, et al. The R2R3-MYB transcription factor MdMYB73 is involved in malate accumulation and vacuolar acidification in apple[J]. Plant J, 2017, 91(3):443-454.DOI: 10.1111/tpj.13579.
[47]
YAO Y X, LI M, ZHAI H, et al. Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synjournal[J]. J Plant Physiol, 2011, 168(5):474-480.DOI: 10.1016/j.jplph.2010.08.008.
[48]
PEACE C P, CRISOSTO C H, GRADZIEL T M. Endopolygalacturonase:a candidate gene for freestone and melting fleshin peach[J]. Mol Breed, 2005, 16(1):21-31.DOI: 10.1007/s11032-005-0828-3.
[49]
MORGUTTI S, NEGRINI N, GHIANI A, et al. Endopolygalacturonase gene polymorphisms:asset of the locus in different peach accessions[J]. Am J Plant Sci, 2017, 8(4):941-957.DOI: 10.4236/ajps.2017.84063.
[50]
COSTA F, WEG W E, STELLA S, et al. Map position and functional allelic diversity of Md-Exp7,a new putative expansin gene associated with fruit softening in apple (Malus × domestica Borkh.) and pear (Pyrus communis)[J]. Tree Genet Genomes, 2008, 4(3):575-586.DOI: 10.1007/s11295-008-0133-5.
[51]
TATSUKI M, NAKAJIMA N, FUJII H, et al. Increased levels of IAA are required for system 2 ethylene synjournal causing fruit softening in peach (Prunus persica L.Batsch)[J]. J Exp Bot, 2013, 64(4):1049-1059.DOI: 10.1093/jxb/ers381.
[52]
张宗营. ‘泰山早霞’苹果(Malus domestica Borkh.)果实成熟软化相关基因的分离与功能鉴定[D]. 泰安:山东农业大学, 2016.
ZHANG Z Y. Isolation and function characterization of genes associated with fruit ripening and softening in ‘Taishanzaoxia’ apple(Malus domestica Borkh.)[D]. Taian:Shandong Agricultural University, 2016.
[53]
LI M, ZHANG Y, ZHANG Z, et al. Hypersensitive ethylene signaling and ZMdPG1 expression lead to fruit softening and dehiscence[J]. PLoS One, 2013, 8(3):e58745.DOI: 10.1371/journal.pone.0058745.
[54]
HAYAMA H, TATSUKI M, ITO A, et al. Ethylene and fruit softe-ning in the stony hard mutation in peach[J]. Postharvest Biol Technol, 2006, 41(1):16-21.DOI: 10.1016/j.postharvbio.2006.03.006.
[55]
PONTES M, MARQUES J C, CÂMARA J S. Headspace solid-phase microextraction-gas chromatography-quadrupole mass spectrometric methodology for the establishment of the volatile composition of Passiflora fruit species[J]. Microchem J, 2009, 93(1):1-11.DOI: 10.1016/j.microc.2009.03.010.
[56]
ZHANG E P, CHAI F M, ZHANG H H, et al. Effects of sunlight exclusion on the profiles of monoterpene biosynjournal and accumulation in grape exocarp and mesocarp[J]. Food Chem, 2017, 237:379-389.DOI: 10.1016/j.foodchem.2017.05.127.
[57]
LÜCKER J, SCHWAB W, VAN HAUTUM B, et al. Increased and altered fragrance of tobacco plants after metabolic engineering using three monoterpene synthases from lemon[J]. Plant Physiol, 2004, 134(1):510-519.DOI: 10.1104/pp.103.030189.
[58]
SHEN S L, YIN X R, ZHANG B, et al. CitAP2.10 activation of the terpene synthase CsTPS1 is associated with the synjournal of (+)-valencene in ‘Newhall’ orange[J]. J Exp Bot, 2016, 67(14):4105-4115.DOI: 10.1093/jxb/erw189.
[59]
LARA I, ECHEVERRÍA G, GRAELL J, et al. Volatile emission after controlled atmosphere storage of mondial gala apples (Malus domestica): relationship to some involved enzyme activities[J]. J Agric Food Chem, 2007, 55(15):6087-6095.DOI: 10.1021/jf070464h.
[60]
王娇娇, 黄玉吉, 张波, 等. 桃果实PpFAD2基因的功能研究[C]// 中国园艺学会.2015年学术年会论文集.厦门, 2015: 27.
[61]
JAAKOLA L. New insights into the regulation of anthocyanin biosynjournal in fruits[J]. Trends Plant Sci, 2013, 18(9):477-483.DOI: 10.1016/j.tplants.2013.06.003.
[62]
GAFRIKOVA M, GALOVA E, SEVCOVICOVA A, et al. Extract from Armoracia rusticana and its flavonoid components protect human lymphocytes against oxidative damage induced by hydrogen peroxide[J]. Molecules, 2014, 19(3):3160-3172.DOI: 10.3390/molecules19033160.
[63]
BATRA P, SHARMA A K. Anti-cancer potential of flavonoids:recent trends and future perspectives[J]. 3 Biotech, 2013, 3(6):439-459.DOI: 10.1007/s13205-013-0117-5.
[64]
CZEMMEL S, STRACKE R, WEISSHAAR B, et al. The grapevine R2R3-MYB transcription factor VvMYBF1 regulates flavonol synjournal in developing grape berries[J]. Plant Physiol, 2009, 151(3):1513-1530.DOI: 10.1104/pp.109.142059.
[65]
孙庆国, 姜生辉, 房鸿成, 等. 苹果MdNAC9的克隆及其调控黄酮醇合成功能的鉴定[J]. 园艺学报, 2019, 46(11):2073-2081.
SUN Q G, JIANG S H, FANG H C, et al. Cloning of MdNAC9 and functional of its regulation on flavonol synjournal[J]. Acta Hortic Sin, 2019, 46(11):2073-2081.DOI: 10.16420/j.issn.0513-353x.2018-1070.
[66]
ZAKAR T, LACZKO-DOBOS H, TOTH T N, et al. Carotenoids assist in cyanobacterial photosystem II assembly and function[J]. Front Plant Sci, 2016, 7:295.DOI: 10.3389/fpls.2016.00295.
[67]
张印, 万勇, 张婷, 等. 柑橘愈伤组织RNAi沉默CCD1基因对其类胡萝卜素积累的影响[J]. 园艺学报, 2020, 47(10):1982-1990.
ZHANG Y, WAN Y, ZHANG T, et al. RNAi-mediated suppression of CCD1 gene impacts carotenoid accumulation in citrus calli[J]. Acta Hortic Sin, 2020, 47(10):1982-1990.DOI: 10.16420/j.issn.0513-353x.2019-1007.
[68]
洪敏, 石丝, 何珊珊, 等. VIGS诱导PSY基因沉默对枇杷果实类胡萝卜素积累的影响[J]. 分子植物育种, 2018, 16(6):1792-1797.
HONG M, SHI S, HE S S, et al. Effects of VIGS induced PSY gene silencing on carotenoid accumulation in fruit of Eriobotrya japonica Lindl[J]. Mol Plant Breed, 2018, 16(6):1792-1797.DOI: 10.13271/j.mpb.016.001792.
[69]
WEI T, DENG K J, LIU D Q, et al. Ectopic expression of DREB transcription factor,AtDREB1A,confers tolerance to drought in transgenic Salvia miltiorrhiza[J]. Plant Cell Physiol, 2016, 57(8):1593-1609.DOI: 10.1093/pcp/pcw084.
[70]
NISHAWY E, SUN X H, EWAS M, et al. Over expression of Citrus grandis DREB gene in tomato affects fruit size and accumulation of primary metabolites[J]. Sci Hortic, 2015, 192:460-467.DOI: 10.1016/j.scienta.2015.06.035.
[71]
裴庆利, 王春连, 刘丕庆, 等. 分子标记辅助选择在水稻抗病虫基因聚合上的应用[J]. 中国水稻科学, 2011(2):119-129.
PEI Q L, WANG C L, LIU P Q, et al. Marker-assisted selection for pyramiding disease and insect resistance genes in rice[J]. Chin J Rice Sci, 2011, 25(2):119-129.
[72]
李君霞, 代书桃, 陈宇翔, 等. MYB转录因子在植物抗旱基因工程中的应用进展[J]. 河南农业科学, 2020, 49(11):1-9.
LI J X, DAI S T, CHEN Y X, et al. Progress on application of MYB transcription factor in plant drought tolerance genetic engineering[J]. J Henan Agric Sci, 2020, 49(11):1-9.DOI: 10.15933/j.cnki.1004-3268.2020.11.001.
[73]
GUBLER F, KALLA R, ROBERTS J K, et al. Gibberellin-regulated expression of a myb gene in barley aleurone cells:evidence for Myb transactivation of a high-pI alpha-amylase gene promoter[J]. Plant Cell, 1995, 7(11):1879-1891.DOI: 10.1105/tpc.7.11.1879.
[74]
LI M J, QIAO Y, LI Y Q, et al. A R2R3-MYB transcription factor gene in common wheat (namely TaMYBsm1) involved in enhancement of drought tolerance in transgenic Arabidopsis[J]. J Plant Res, 2016, 129(6):1097-1107.DOI: 10.1007/s10265-016-0857-5.
[75]
QIN Y X, WANG M C, TIAN Y C, et al. Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis[J]. Mol Biol Rep, 2012, 39(6):7183-7192.DOI: 10.1007/s11033-012-1550-y.
[76]
ZHANG L, ZHAO G, XIA C, et al. A wheat R2R3-MYB gene,TaMYB30-B,improves drought stress tolerance in transgenic Arabidopsis[J]. J Exp Bot, 2012, 63(16):5873-5885.DOI: 10.1093/jxb/ers237.
[77]
YU Y T, WU Z, LU K, et al. Overexpression of the MYB37 transcription factor enhances abscisic acid sensitivity,and improves both drought tolerance and seed productivity in Arabidopsis thaliana[J]. Plant Mol Biol, 2016, 90(3):267-279.DOI: 10.1007/s11103-015-0411-1.
[78]
LI K, XING C, YAO Z, et al. PbrMYB21,a novel MYB protein of Pyrus betulaefolia,functions in drought tolerance and modulates polyamine levels by regulating arginine decarboxylase gene[J]. Plant Biotechnol J, 2017, 15(9):1186-1203.DOI: 10.1111/pbi.12708.
[79]
SHUKLA P S, GUPTA K, AGARWAL P, et al. Overexpression of a novel SbMYB15 from Salicornia brachiata confers salinity and dehydration tolerance by reduced oxidative damage and improved photosynjournal in transgenic tobacco[J]. Planta, 2015, 242(6):1291-1308.DOI: 10.1007/s00425-015-2366-5.
[80]
GUO T L, WANG N, XUE Y C, et al. Overexpression of the RNA binding protein MhYTP1 in transgenic apple enhances drought tolerance and WUE by improving ABA level under drought condition[J]. Plant Sci, 2019, 280:397-407.DOI: 10.1016/j.plantsci.2018.11.018.
[81]
RUGINI E, DE PACE C. Olive breeding with classical and modern approaches Olive Tree Genome, 2016:163-193.DOI: 10.1007/978-3-319-48887-5_10.
[82]
乌凤章, 王贺新, 徐国辉, 等. 木本植物低温胁迫生理及分子机制研究进展[J]. 林业科学, 2015, 51(7):116-128.
WU F Z, WANG H X, XU G H, et al. Research progress on the physiological and molecular mechanisms of woody plants under low temperature stress[J]. Sci Silvae Sin, 2015, 51(7):116-128.
[83]
刘肖. 蓝莓抗寒性、需冷量SNP分析与分子辅助育种研究[D]. 北京:北京林业大学, 2013.
LIU X. Study on molecular marker-assisted breeding with single nucleotide polymorphisms linked to cold hardiness and chilling requirement in blueberry[D]. Beijing:Beijing Forestry University, 2013.
[84]
HUANG X S, WANG W, ZHANG Q, et al. A basic helix-loop-helix transcription factor,PtrbHLH,of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide[J]. Plant Physiol, 2013, 162(2):1178-1194.DOI: 10.1104/pp.112.210740.
[85]
LIU C Y, YAN M, HUANG X B, et al. Effects of NaCl stress on growth and ion homeostasis in pomegranate tissues[J]. Eur J Hortic Sci, 2020, 85(1):42-50.DOI: 10.17660/ejhs.2020/85.1.5.
[86]
樊军锋, 李嘉瑞, 韩一凡, 等. mtlD/gutD双价耐盐基因转化秦美猕猴桃的研究[J]. 西北农林科技大学学报(自然科学版), 2002, 30(3):53-58.
FAN J F, LI J R, HAN Y F, et al. Studies on transformation of mtlD/gutD salt-resistant gene to Kiwifruit(Qin-mei)[J]. J Northwest Sci-Tech Univ Agric For, 2002, 30(3):53-58. DOI: 10.13207/j.cnki.jnwafu.2002.03.014.
[87]
孙宁, 孙建设, 李增裕. 苹果砧木耐盐突变体的筛选鉴定及RAPD分析[J]. 河北农业大学学报, 2004, 27(5):37-40.
SUN N, SUN J S, LI Z Y. Salt tolerant mutant screening and RAPD analysis studies on apple rootstock[J]. J Agric Univ Hebei, 2004, 27(5):37-40.
[88]
MOORE G A, GUY C L, TOZLU I, et al. Mapping quantitative trait loci for salt tolerance and cold tolerance in Citrus grandis (L.) osb.× Poncirus trifoliata (L.) raf.hybrid populations[J]. Acta Hortic, 2000(535):37-46.DOI: 10.17660/actahortic.2000.535.3.
[89]
TOZLU I, GUY C L, MOORE G A. QTL analysis of Na+ and Cl- accumulation related traits in an intergeneric BC1 progeny of Citrus and Poncirus under saline and nonsaline environments[J]. Genome, 1999, 42(4):692-705.DOI: 10.1139/g99-003.
[90]
ZHAO K, SHEN X, YUAN H, et al. Isolation and characterization of dehydration-responsive element-binding factor 2C (MsDREB2C) from Malus sieversii Roem[J]. Plant Cell Physiol, 2013, 54(9):1415-1430.DOI: 10.1093/pcp/pct087.
[91]
BOUAZIZ D, PIRRELLO J, BEN AMOR H, et al. Ectopic expression of dehydration responsive element binding proteins (StDREB2) confers higher tolerance to salt stress in potato[J]. Plant Physiol Biochem, 2012, 60:98-108.DOI: 10.1016/j.plaphy.2012.07.029.
[92]
YAISH M W, SUNKAR R, ZHENG Y, et al. A genome-wide identification of the miRNAome in response to salinity stress in date palm (Phoenix dactylifera L.)[J]. Front Plant Sci, 2015, 6:946.DOI: 10.3389/fpls.2015.00946.
[93]
郭宝强. 苹果树腐烂病防治技术要点[J]. 农业工程技术, 2019, 39(35):48.
GUO B Q. Key points of controlling apple tree rot disease[J]. Agric Eng Technol, 2019, 39(35):48.DOI: 10.16815/j.cnki.11-5436/s.2019.35.036.
[94]
蒋迪, 徐昌杰, 陈大明, 等. 柑橘转基因研究的现状及展望[J]. 果树学报, 2002, 19(1):48-52.
JIANG D, XU C J, CHEN D M, et al. Status and prospect of research in Citrus transgene[J]. J Fruit Sci, 2002, 19(1):48-52.DOI: 10.13925/j.cnki.gsxb.2002.01.013.
[95]
FITCH M M M, MANSHARDT R M, GONSALVES D, et al. Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus[J]. Bio/Technology, 1992, 10(11):1466-1472.DOI: 10.1038/nbt1192-1466.
[96]
李亚新. 首例商品化的转基因果树:番木瓜[J]. 园艺学报, 2000, 27(1):51.
LI Y X. The first commercialized genetically modified fruit tree: papaya[J]. Acta Hortic Sin, 2000, 27(1):51.
[97]
SCORZA R, CORDTS J M, MANTE S, et al. Agrobacterium-media-ted transformation of plum (Prunus domestica L.) with the papaya ringspot virus coat protein gene[J]. HortScience, 1991, 26(6):786-786.
[98]
CÂMARA MACHADO M L, CÂMARA MACHADO A, HANZER V, et al. Regeneration of transgenic plants of Prunus armeniaca containing the coat protein gene of Plum Pox Virus[J]. Plant Cell Rep, 1992, 11(1):25-29.DOI: 10.1007/BF00231834.
[99]
ZHOU K, HU L, LI Y, et al. MdUGT88F1-mediated phloridzin biosynjournal regulates apple development and Valsa canker resis-tance[J]. Plant Physiol, 2019, 180(4):2290-2305.DOI: 10.1104/pp.19.00494.
[100]
LEGRAND V, DALMAYRAC S, LATCHÉ A, et al. Constitutive expression of Vr-ERE gene in transformed grapevines confers enhanced resistance to eutypine,a toxin from Eutypa lata[J]. Plant Sci, 2003, 164(5):809-814.DOI: 10.1016/S0168-9452(03)00069-4.
[101]
FAN C H, PU N, WANG X P, et al. Agrobacterium-mediated genetic transformation of grapevine (Vitis vinifera L.) with a novel stilbene synthase gene from Chinese wild Vitis pseudoreticulata[J]. Plant Cell Tissue Organ Cult, 2008, 92(2):197-206.DOI: 10.1007/s11240-007-9324-2.
[102]
VIDAL J R, KIKKERT J R, DONZELLI B D, et al. Biolistic transformation of grapevine using minimal gene cassette technology[J]. Plant Cell Rep, 2006, 25(8):807-814.DOI: 10.1007/s00299-006-0132-7.
[103]
VIDAL J R, KIKKERT J R, MALNOY M A, et al. Evaluation of transgenic ‘Chardonnay’ (Vitis vinifera) containing Magainin genes for resistance to crown gall and powdery mildew[J]. Transgenic Res, 2006, 15(1):69-82.DOI: 10.1007/s11248-005-4423-5.
[104]
VIDAL J R, KIKKERT J R, WALLACE P G, et al. High-efficiency biolistic co-transformation and regeneration of ‘Chardonnay’ (Vitis vinifera L.) containing npt-II and antimicrobial peptide genes[J]. Plant Cell Rep, 2003, 22(4):252-260.DOI: 10.1007/s00299-003-0682-x.
[105]
SONG G Q, SINK K C, WALWORTH A E, et al. Engineering cherry rootstocks with resistance to Prunus necrotic ring spot virus through RNAi-mediated silencing[J]. Plant Biotechnol J, 2013, 11(6):702-708.DOI: 10.1111/pbi.12060.
[106]
MACHADO M A, CRISTOFANI-YALY M, BASTIANEL M. Breeding,genetic and genomic of Citrus for disease resistance[J]. Rev Bras Frutic, 2011, 33(spe1):158-172.DOI: 10.1590/s0100-29452011000500019.
[107]
OMAR A A, MURATA M M, EL-SHAMY H A, et al. Enhanced resistance to citrus canker in transgenic mandarin expressing Xa21 from rice[J]. Transgenic Res, 2018, 27(2):179-191.DOI: 10.1007/s11248-018-0065-2.
[108]
WON K, BASTIAANSE H, KIM Y K, et al. Genetic mapping of polygenic scab (Venturia pirina) resistance in an interspecific pear family[J]. Mol Breed, 2014, 34(4):2179-2189.DOI: 10.1007/s11032-014-0172-6.
[109]
REYNOIRD J P, MOURGUES F, NORELLI J, et al. First evidence for improved resistance to fire blight in transgenic pear expressing the attacin E gene from Hyalophora cecropia[J]. Plant Sci, 1999, 149(1):23-31.DOI: 10.1016/S0168-9452(99)00139-9.
[110]
李梦桃, 李圣彦, 汪海, 等. 转cry2Ah-vp基因玉米的抗虫性鉴定[J]. 植物保护学报, 2020, 47(1):74-83.
LI M T, LI S Y, WANG H, et al. Identification of insect resistance in the transgenic maize harboring cry2Ah-vp gene[J]. J Plant Prot, 2020, 47(1):74-83.DOI: 10.13802/j.cnki.zwbhxb.2020.2019043.
[111]
JAMES D J, PASSEY A J, WEBSTER A D, et al. Transgenic apples and strawberries: advances in transformation,introduction of genes for insect resistance and field studies of tissue cultured plants[J]. Acta Hortic, 1993, 336:179-184. DOI: 10.17660/ActaHortic.1993.336.22.
[112]
LING P, DUNCAN L W, DENG Z, et al. Inheritance of Citrus nematode resistance and its linkage with molecular markers[J]. Theor Appl Genet, 2000, 100(7):1010-1017.DOI: 10.1007/s001220051382.
[113]
YANG Z N, INGELBRECHT I L, LOUZADA E, et al. Agrobacterium-mediated transformation of the commercially important grapefruit cultivar Rio Red (Citrus paradisi Macf.)[J]. Plant Cell Rep, 2000, 19(12):1203-1211.DOI: 10.1007/s002990000257.
[114]
RAMÍREZ F, KALLARACKAL J. Introduction[M]// Responses of fruit trees to global climate change.Cham: Springer International Publishing, 2015:1-2. DOI: 10.1007/978-3-319-14200-5_1.
[115]
CECCARELLI S, GRANDO S, MAATOUGUI M, et al. Plant breeding and climate changes[J]. J Agric Sci, 2010, 148(6):627-637.DOI: 10.1017/s0021859610000651.
[116]
OLESEN J E, BØRGESEN C D, ELSGAARD L, et al. Changes in time of sowing,flowering and maturity of cereals in Europe under climate change[J]. Food Addit Contam:Part A, 2012, 29(10):1527-1542.DOI: 10.1080/19440049.2012.712060.
[117]
CAMPOY J A, RUIZ D, EGEA J. Dormancy in temperate fruit trees in a global warming context:a review[J]. Sci Hortic, 2011, 130(2):357-372.DOI: 10.1016/j.scienta.2011.07.011.
[118]
蔡榕硕, 付迪. 全球变暖背景下中国东部气候变迁及其对物候的影响[J]. 大气科学, 2018, 42(4):729-740.
CAI R S, FU D. The pace of climate change and its impacts on phenology in eastern China[J]. Chin J Atmos Sci, 2018, 42(4):729-740.
[119]
郑景云, 葛全胜, 郝志新, 等. 过去150年长三角地区的春季物候变化[J]. 地理学报, 2012, 67(1):45-52.
Abstract
利用中国历史日记中的长三角地区春季物候记录,重建了该地区1834 年以来的春季物候期变化序列,同时结合气温观测资料分析了该序列对温度变化的指示意义。主要结论有:(1) 1834-1893 年,长三角地区春季物候在波动中逐渐推迟,但19 世纪末起突然出现大幅提前;1900-1990 年以年代际波动为主要特征,1990-2010 年又再次出现大幅提前;1834 年以来,该地区春季物候最迟的年份为1893 年,最早的年份为2007 年,分别较1977-1996 年平均推迟27 天和提早17 天。(2) 长三角地区的春季物候期变化与该地区上年12 月-当年3 月及当年1-3 月气温变化的相关系数分别超过-0.75、-0.80,可很好地指示该地区的冬季与初春(特别是1-3 月) 气温变化;这为进一步集成多种代用资料重建历史时期的中国温度变化提供了重要数据基础和依据。
ZHENG J Y, GE Q S, HAO Z X, et al. Changes of spring phenodate in Yangtze River Delta region in the past 150 years[J]. Acta Geogr Sin, 2012, 67(1):45-52.
[120]
TAO F L, YOKOZAWA M, XU Y L, et al. Climate changes and trends in phenology and yields of field crops in China,1981-2000[J]. Agric For Meteorol, 2006, 138(1/2/3/4):82-92.DOI: 10.1016/j.agrformet.2006.03.014.
[121]
郭建平. 气候变化对中国农业生产的影响研究进展[J]. 应用气象学报, 2015, 26(1):1-11.
GUO J P. Advances in impacts of climate change on agricultural production in China[J]. J Appl Meteorol Sci, 2015, 26(1):1-11.
[122]
刘玉洁, 陈巧敏, 葛全胜, 等. 气候变化背景下1981—2010中国小麦物候变化时空分异[J]. 中国科学:地球科学, 2018, 48(7):888-898.
LIU Y J, CHEN Q M, GE Q S, et al. Spatiotemporal differentiation of changes in wheat phenology in China under climate change from 1981 to 2010[J]. Sci Sin (Terrae), 2018, 48(7):888-898.
[123]
LEGAVE J M, BLANKE M, CHRISTEN D, et al. A comprehensive overview of the spatial and temporal variability of apple bud dormancy release and blooming phenology in western Europe[J]. Int J Biometeorol, 2013, 57(2):317-331.DOI: 10.1007/s00484-012-0551-9.
[124]
王力荣, 朱更瑞, 左覃元, 等. 短低温桃和油桃育种进展[J]. 果树科学, 2000, 17(1):57-62.
WANG L R, ZHU G R, ZUO Q Y, et al. Reviews of low chilling peach and nectarine breeding[J]. J Fruit Sci, 2000, 17(1):57-62. DOI: 10.13925/j.cnki.gsxb.2000.01.014.
[125]
赵锋, 刘威生, 刘宁, 等. 我国杏种质资源及遗传育种研究新进展[J]. 果树学报, 2005, 22(6):687-690.
ZHAO F, LIU W S, LIU N, et al. Reviews of the apricot germplasm resources and genetic breeding in China[J]. J Fruit Sci, 2005, 22(6):687-690.
[126]
郁香荷, 刘威生, 刘宁, 等. 杏温室栽培品种选择及配套技术研究[J]. 果树学报, 2004, 21(1):76-78.
YU X H, LIU W S, LIU N, et al. Varieties and techniques of cultivation of apricot in greenhouse[J]. J Fruit Sci, 2004, 21(1):76-78.
[127]
KOSKI M H, MACQUEEN D, ASHMAN T L. Floral pigmentation has responded rapidly to global change in ozone and temperature[J]. Curr Biol, 2020, 30(22):4425-4431.DOI: 10.1016/j.cub.2020.08.077.
[128]
VU J C V, NEWMAN Y C, ALLEN L H Jr, et al. Photosynthetic acclimation of young sweet orange trees to elevated growth CO2 and temperature[J]. J Plant Physiol, 2002, 159(2):147-157.DOI: 10.1078/0176-1617-00689.
[129]
侯新村, 李宪利, 高东升, 等. CO2施肥对桃树暗呼吸和光呼吸的影响[J]. 果树学报, 2005, 22(5):466-469.
HOU X C, LI X L, GAO D S, et al. Effect of CO2 enrichment on respiration and photorespiration of peach trees[J]. J Fruit Sci, 2005, 22(5):466-469.
[130]
EL YAACOUBI A, EL JAOUHARI N, BOURIOUG M, et al. Potential vulnerability of moroccan apple orchard to climate change-induced phenological perturbations:effects on yields and fruit quality[J]. Int J Biometeorol, 2020, 64(3):377-387.DOI: 10.1007/s00484-019-01821-y.
[131]
BIGARD A, BERHE D T, MAODDI E, et al. Vitis vinifera L.fruit diversity to breed varieties anticipating climate changes[J]. Front Plant Sci, 2018, 9:455.DOI: 10.3389/fpls.2018.00455.
[132]
Al-KHAYRI J M, JAIN S M, JOHNSON D V. Advances in plant breeding strategies: fruits[M]. Spr Int Publing AG, 2018.
[133]
GITEA M A, GITEA D, TIT D M, et al. Orchard management under the effects of climate change: implications for apple,plum,and almond growing[J]. Environ Sci Pollut Res, 2019, 26:9908-9915. DOI: 10.1007/s11356-019-04214-1.
[134]
李明, 刘聪利, 齐希梁, 等. 中国甜樱桃产业的品种现状、需求特点与未来育种目标[J]. 落叶果树, 2019, 51(3):5-7.
LI M, LIU C L, QI X L, et al. Current situation,demand characteristics and future breeding objectives of sweet cherry industry in China[J]. Deciduous Fruits, 2019, 51(3):5-7.DOI: 10.13855/j.cnki.lygs.2019.03.002.
[135]
彭颖姝, 高捍东, 苑兆和. 全球气候变化对温带果树的影响[J]. 中国农业科技导报, 2018, 20(7):1-10.
PENG Y S, GAO H D, YUAN Z H. Impact of global climate change on temperate fruit tree[J]. J Agric Sci Technol, 2018, 20(7):1-10.DOI: 10.13304/j.nykjdb.2017.0463.
[136]
束怀瑞. 关于苹果产业新动能的几点思考[J]. 落叶果树, 2018, 50(2):1-2.
SHU H R. Some thoughts on the new momentum of the apple industry[J]. Deciduous Fruits, 2018, 50(2):1-2.DOI: 10.13855/j.cnki.lygs.2018.02.001.
[137]
冯轶, 许雪峰, 张新忠, 等. 苹果矮化砧木致矮机理的研究进展[J]. 园艺学报, 2018, 45(9):1633-1641.
FENG Y, XU X F, ZHANG X Z, et al. Progress of dwarfing mechanism of apple rootstock[J]. Acta Hortic Sin, 2018, 45(9):1633-1641.DOI: 10.16420/j.issn.0513-353x.2018-0384.

RIGHTS & PERMISSIONS

Copyright reserved © 2021
PDF(1565 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/