JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (2): 77-86.doi: 10.12302/j.issn.1000-2006.201902033
Previous Articles Next Articles
CHEN Xiubo1,2(), DUAN Wenbiao1,*(), CHEN Lixin1, ZHU Dequan3,4, ZHAO Chenchen3, LIU Dongxu3,4
Received:
2019-02-27
Accepted:
2020-11-26
Online:
2021-03-30
Published:
2021-04-09
Contact:
DUAN Wenbiao
E-mail:feimen5633525@126.com;dwbiao88@163.com
CLC Number:
CHEN Xiubo, DUAN Wenbiao, CHEN Lixin, ZHU Dequan, ZHAO Chenchen, LIU Dongxu. Community structure and diversity of soil nirK-type denitrifying microorganisms in three forest types of primitive Pinus koraiensis mixed forest in Liangshui National Nature Reserve, Lesser Khingan Mountains[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(2): 77-86.
Table 1
Basic information of sampling sites of three types of primitive Pinus koraiensis forest of Lesser Khingan Mountains"
林型 forest type | 林分密度/ (株·hm-2) stand density | 平均树高/m mean height | 平均胸径/cm mean DBH | 郁闭度/% canopy | 主要植物 main plants |
---|---|---|---|---|---|
云冷杉红松林 Picea asperata and Abies fabri- Piuns koraiensis forest | 156.00±40.00 | 25.27±1.51 | 50.33±4.25 | 81.50±4.51 | 冷杉(Abies fabri)、云杉(Picea asperata)、花楷槭(Acer ukurunduense)、青楷槭(A. tegmentosum)、五角槭(A. mono) |
椴树红松林 Tilia spp.-Pinus koraiensis forest | 128.00±39.19 | 26.37±1.67 | 54.45±6.26 | 84.50±5.45 | 槺椴(Tilia mandschurica)、紫椴(T. amurensis)、花楷槭(A. ukurunduense)、青楷槭(A. tegmentosum)、五角槭(A. mono) |
枫桦红松林 Betula costata- Pinus koraiensis forest | 128.00±42.10 | 28.60±2.60 | 59.80±8.40 | 89.50±6.30 | 枫桦(Betula costata)、五角槭(A. mono)、臭松(Abies nephrolepis)、稠李(Prunus padus)、青楷槭(A. tegmentosum)、椴树(Tilia spp.)、毛榛子(Corylus mandshurica)、瘤枝卫矛(Euonymus verrucosus)等 |
Table 2
Physicochemical properties of soil in three types of primitive Pinus koraiensis mixed forest of Lesser Khingan Mountains"
林型 forest type | pH | 土壤含水 量/% soil water content | 总有机碳/ (g·kg-1) total organic carbon | 全氮/ (g·kg-1) total nitrogen | 全磷/ (mg·kg-1) total phosphorus | 总孔 隙度/% total porosity | 土壤容重/ (g·cm-3) soil bulk density | (mg·kg-1) content of | N 含量 (mg·kg-1) content of |
---|---|---|---|---|---|---|---|---|---|
A | 6.13±0.15 a | 62.79±4.18 a | 213.69±21.28 a | 4.48±0.18 a | 5.46±0.35 b | 46.46±2.27 b | 0.89±0.06 a | 5.13±0.25 a | 20.36±0.95 c |
B | 6.11±0.25 a | 78.21±7.32 b | 216.32±20.43 a | 4.69±0.07 a | 5.17±0.29 b | 51.86±1.63 a | 0.93±0.06 a | 4.76±0.36 b | 25.00±1.63 b |
C | 5.95±0.56 a | 62.46±3.36 a | 202.80±36.54 a | 6.85±0.92 b | 9.87±0.54 a | 51.68±1.91 a | 0.93±0.02 a | 4.26±0.16 c | 36.15±3.10 a |
Table 3
Alpha diversity index of soil nirK-type denitrifying microorganisms in three types of primitive Pinus koraiensis mixed forest of Lesser Khingan Mountains"
林型 forest types | Shannon 指数 Shannon index | Ace指数 Ace index | Chao1 指数 Chao1 index | Simpson 指数 Simpson index |
---|---|---|---|---|
云冷杉红松林 Picea asperata and Abies fabri- Pinus koraiensis forest | 8.22± 0.18 a | 1433± 329.86 a | 1414± 303.83 a | 0.99± 0.003 a |
椴树红松林 Tilia spp.- P. koraiensis forest | 7.79± 2.19 a | 1844± 532.61 a | 1779± 506.67 a | 0.90± 0.16 a |
枫桦红松林 Betula costata- P. koraiensis forest | 7.45± 1.25 a | 1630± 915.70 a | 1578± 836.18 a | 0.93± 0.04 a |
[1] | 王宁, 杨雪, 李世兰, 等. 不同海拔红松混交林土壤微生物量碳、氮的生长季动态[J]. 林业科学, 2016,52(1):150-158. |
WANG N, YANG X, LI S L, et al. Seasonal dynamics of soil microbial biomass carbon-nitrogen in the Korean pine mixed forests along elevation gradient[J]. Sci Silvae Sin, 2016,52(1):150-158.DOI: 10.11707/j.1001-7488.20160118. | |
[2] | 孙雪, 隋心, 韩冬雪, 等. 原始红松林退化演替后土壤微生物功能多样性的变化[J]. 环境科学研究, 2017,30(6):911-919. |
SUN X, SUI X, HAN D X, et al. Changes of soil microbial functional diversity in the degraded and successional primitive Korean pine forest in Lesser Khingan Mountain,Northern China[J]. Res Environ Sci, 2017,30(6):911-919.DOI: 10.13198/j.issn.1001-6929.2017.01.90. | |
[3] | SHAW L J, NICOL G W, SMITH Z, et al. Nitrosospira spp.can produce nitrous oxide via a nitrifier denitrification pathway[J]. Environ Microbiol, 2006,8(2):214-222.DOI: 10.1111/j.1462-2920.2005.00882.x. |
[4] | JONES C M, HALLIN S. Ecological and evolutionary factors underlying global and local assembly of denitrifier communities[J]. ISME J, 2010,4(5):633-641.DOI: 10.1038/ismej.2009.152. |
[5] | PRIEME A, BRAKER G, TIEDJE J M. Diversity of nitrite reductase (nirK and nirS) gene fragments in forested upland and wetland soils[J]. Appl Environ Microbiol, 2002,68(4):1893-1900.DOI: 10.1128/aem.68.4.1893-1900.2002. |
[6] | RUIZ-RUEDA O, TRIAS R, GARCIA-GIL L J, et al. Diversity of the nitrite reductase gene nirS in the sediment of a free-water surface constructed wetland[J]. International Microbiology: the Official Journal of the Spanish Society for Microbiology, 2007,10(4):253-260. DOI: 10.2436/20.1501.01.34 |
[7] | CAVIGELLI M A, ROBERTSON G P. The functional significance of denitrifier community composition in a terrestrial ecosystem[J]. Ecology, 2000,81(5):1402-1414.DOI: 10.1890/0012-9658(2000)081[1402:TFSODC]2.0.CO;2. |
[8] | ZUMFT W G. Cell biology and molecular basis of denitrification[J]. Microbiol Mol Biol Rev, 1997,61(4):533-616.DOI: 10.1128/.61.4.533-616.1997. |
[9] | BRAKER G, ZHOU J, WU L, et al. Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific northwest marine sediment communities[J]. Appl Environ Microbiol, 2000,66(5):2096-2104.DOI: 10.1128/aem.66.5.2096-2104.2000. |
[10] | 朱杰, 刘海, 吴邦魁, 等. 稻虾共作对稻田土壤nirK反硝化微生物群落结构和多样性的影响[J]. 中国生态农业学报, 2018,26(9):1324-1332. |
ZHU J, LIU H, WU B K, et al. Effects of integrated rice-crayfish farming system on community structure and diversity of nirK denitrification microbe in paddy soils[J]. Chin J Eco-Agric, 2018,26(9):1324-1332.DOI: 10.13930/j.cnki.cjea.171165. | |
[11] | CHEN J, NIE Y X, LIU W, et al. Ammonia-oxidizing Archaea are more resistant than denitrifiers to seasonal precipitation changes in an acidic subtropical forest soil[J]. Front Microbiol, 2017,8:1384.DOI: 10.3389/fmicb.2017.01384. |
[12] | TANG Y Q, ZHANG X Y, LI D D, et al. Impacts of nitrogen and phosphorus additions on the abundance and community structure of Ammonia oxidizers and denitrifying bacteria in Chinese fir plantations[J]. Soil Biol Biochem, 2016,103:284-293.DOI: 10.1016/j.soilbio.2016.09.001. |
[13] | KEIL D, MEYER A, BERNER D, et al. Influence of land-use intensity on the spatial distribution of N-cycling microorganisms in grassland soils[J]. FEMS Microbiol Ecol, 2011,77(1):95-106.DOI: 10.1111/j.1574-6941.2011.01091.x. |
[14] | WANG Z, ZHANG X X, LU X, et al. Abundance and diversity of bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants revealed by high-throughput sequencing[J]. PLoS One, 2014,9(11):e113603.DOI: 10.1371/journal.pone.0113603. |
[15] | LI F G, LI M C, SHI W C, et al. Distinct distribution patterns of proteobacterial nirK-and nirS-type denitrifiers in the Yellow River estuary,China[J]. Can J Microbiol, 2017,63(8):708-718.DOI: 10.1139/cjm-2017-0053. |
[16] | HAN B, YE X H, LI W, et al. The effects of different irrigation regimes on nitrous oxide emissions and influencing factors in greenhouse tomato fields[J]. J Soils Sediments, 2017,17(10):2457-2468.DOI: 10.1007/s11368-017-1700-x. |
[17] | 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. |
BAO S D. Soil and agricultural chemistry analysis[M]. Beijing: China Agriculture Press, 2000. | |
[18] | 张维玲, 张金池. 不同种植时间脐橙园土壤理化特性研究[J]. 南京林业大学学报(自然科学版), 2018,42(4):181-186. |
ZHANG W L, ZHANG J C. Effects of different planting years on soil physical and chemical properties in navel orange orchard[J]. J Nanjing For Univ(Nat Sci Ed), 2018,42(4):181-186. | |
[19] | 郝玉琢, 周磊, 吴慧, 等. 4种类型水曲柳人工林叶片-凋落物-土壤生态化学计量特征比较[J]. 南京林业大学学报(自然科学版), 2019,43(4):101-108. |
HAO Y Z, ZHOU L, WU H, et al. Comparison of ecological stoichiometric characteristics of leaf-litter-soil in four types of Fraxinus mandshurica plantations[J]. J Nanjing For Univ(Nat Sci Ed), 2019,43(4):101-108.DOI: 10.3969/j.issn.1000-2006.201806021 | |
[20] | 王国兵, 王瑞, 徐瑾, 等. 生物炭对杨树人工林土壤微生物生物量碳、氮、磷及其化学计量特征的影响[J]. 南京林业大学学报(自然科学版), 2019,43(2):1-6. |
WANG G B, WANG R, XU J, et al. Effects of biochar application on microbial biomass C,N,P and stoichiometry characteristics of poplar plantation soil[J]. J Nanjing For Univ(Nat Sci Ed), 2019,43(2):1-6.DOI: 10.3969/j.issn.1000-2006.201803022 | |
[21] | CAPORASO J G, LAUBER C L, WALTERS W A, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms[J]. The ISME Journal, 2012,6(8):1621-1624. DOI: 10.1038/ismej.2012.8. |
[22] | EDGAR R C. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010,26(19):2460-2461.DOI: 10.1093/bioinformatics/btq461. |
[23] | WHITE J R, NAGARAJAN N, POP M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples[J]. PLoS Comput Biol, 2009,5(4):e1000352.DOI: 10.1371/journal.pcbi.1000352. |
[24] | HOU S P, AI C, ZHOU W, et al. Structure and assembly cues for rhizospheric nirK-and nirS-type denitrifier communities in long-term fertilized soils[J]. Soil Biol Biochem, 2018,119:32-40.DOI: 10.1016/j.soilbio.2018.01.007. |
[25] | BREMER C, BRAKER G, MATTHIES D, et al. Impact of plant functional group, plant species, and sampling time on the composition of nirK-type denitrifier communities in soil[J]. Applied and Environmental Microbiology, 2007,73(21):6876-6884. DOI: 10.1128/aem.01536-07. |
[26] | YANG Y D, HU Y G, WANG Z M, et al. Variations of the nirS-,nirK-,and nosZ-denitrifying bacterial communities in a northern Chinese soil as affected by different long-term irrigation regimes[J]. Environ Sci Pollut Res, 2018,25(14):14057-14067.DOI: 10.1007/s11356-018-1548-7. |
[27] | 杜倩, 梁素钰, 李琳, 等. 阔叶红松林土壤酶活性及微生物群落功能多样性分析[J]. 森林工程, 2019,35(1):1-7. |
DU Q, LIANG S Y, LI L, et al. Soil enzyme activities and microbial community functional diversity of broad-leaved Korean pine forest[J]. Forest Engineering, 2019,35(1):1-7. | |
[28] | 罗希茜, 陈哲, 胡荣桂, 等. 长期施用氮肥对水稻土亚硝酸还原酶基因多样性的影响[J]. 环境科学, 2010,31(2):423-430. |
LUO X Q, CHEN Z, HU R G, et al. Effect of long-term fertilization on the diversity of nitrite reductase genes(nirK and nirS) in paddy soil[J]. Environ Sci, 2010,31(2):423-430.DOI: 10.13227/j.hjkx.2010.02.038. | |
[29] | 王婷, 刘丽丽, 张克强, 等. 牛场肥水灌溉对土壤nirK、nirS型反硝化微生物群落结构的影响[J]. 生态学报, 2017,37(11):3655-3664. |
WANG T, LIU L L, ZHANG K Q, et al. Effects of cattle fertilizer on community structure of nirK-and nirS-type denitrifying bacteria in soil[J]. Acta Ecol Sin, 2017,37(11):3655-3664.DOI: 10.5846/stxb201604180714. | |
[30] | BAÑERAS L, RUIZ-RUEDA O, LÓPEZ-FLORES R, et al. The role of plant type and salinity in the selection for the denitrifying community structure in the rhizosphere of wetland vegetation[J]. Int Microbiol, 2012,15(2):89-99.DOI: 10.2436/20.1501.01.162. |
[31] | URBANOVÁ M, ŠNAJDR J, BALDRIAN P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees[J]. Soil Biol Biochem, 2015,84:53-64.DOI: 10.1016/j.soilbio.2015.02.011. |
[32] | BARTA J, TAHOVSKA K, KAAA J, et al. The effect of nitrate addition on abundance of nirK, nirS and gln genes in acidified Norway spruce forest soil, proceedings of the EGU General Assembly Conference[C]. Vienna,Austria, 2010. |
[33] | SZUKICS U, ABELL G C J, HÖDL V, et al. Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil[J]. FEMS Microbiol Ecol, 2010,72(3):395-406.DOI: 10.1111/j.1574-6941.2010.00853.x. |
[34] | BÁRTA J, MELICHOVÁ T, VANĚK D, et al. Effect of pH and dissolved organic matter on the abundance of nirK and nirS denitrifiers in spruce forest soil[J]. Biogeochemistry, 2010,101(1/2/3):123-132.DOI: 10.1007/s10533-010-9430-9. |
[35] | KANDELER E, BRUNE T, ENOWASHU E, et al. Response of total and nitrate-dissimilating bacteria to reduced N deposition in a spruce forest soil profile[J]. FEMS Microbiol Ecol, 2009,67(3):444-454.DOI: 10.1111/j.1574-6941.2008.00632.x. |
[36] | PETERSEN D G, BLAZEWICZ S J, FIRESTONE M, et al. Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska[J]. Environ Microbiol, 2012,14(4):993-1008.DOI: 10.1111/j.1462-2920.2011.02679.x. |
[37] | LEVY-BOOTH D J, WINDER R S. Quantification of nitrogen reductase and nitrite reductase genes in soil of thinned and clear-cut Douglas-fir stands by using real-time PCR[J]. Appl Environ Microbiol, 2010,76(21):7116-7125.DOI: 10.1128/aem.02188-09. |
[38] | MORALES S E, COSART T, HOLBEN W E. Bacterial gene abundances as indicators of greenhouse gas emission in soils[J]. The ISME Journal, 2010,4(6):799-808. DOI: 10.1038/ismej.2010.8. |
[39] | 姜一, 陈立新, 段文标, 等. 小兴安岭原始红松混交林林隙土壤不同形态氮含量[J]. 生态学杂志, 2014,33(12):3374-3380. |
JIANG Y, CHEN L X, DUAN W B, et al. Concentrations of different nitrogen forms in gaps of natural Pinus koraiensis mixed forest in Xiao Xing’anling Mountains[J]. Chin J Ecol, 2014,33(12):3374-3380.DOI: 10.13292/j.1000-4890.2014.0302. | |
[40] | BAGGS E M, SMALES C L, BATEMAN E J. Changing pH shifts the microbial sourceas well as the magnitude of N2O emission from soil[J]. Biol Fertil Soils, 2010,46(8):793-805.DOI: 10.1007/s00374-010-0484-6. |
[41] | LIGI T, TRUU M, TRUU J, et al. Effects of soil chemical characteristics and water regime on denitrification genes (nirS,nirK,and nosZ) abundances in a created riverine wetland complex[J]. Ecol Eng, 2014,72:47-55.DOI: 10.1016/j.ecoleng.2013.07.015. |
[42] | XIE Z, LE ROUX X, WANG C P, et al. Identifying response groups of soil nitrifiers and denitrifiers to grazing and associated soil environmental drivers in Tibetan alpine meadows[J]. Soil Biol Biochem, 2014,77:89-99.DOI: 10.1016/j.soilbio.2014.06.024. |
[43] | CHEN C, ZHANG J N, LU M, et al. Microbial communities of an arable soil treated for 8 years with organic and inorganic fertilizers[J]. Biology and Fertility of Soils, 2016,52(4):455-467.DOI: 10.1007/s00374-016-1089-5. |
[1] | FAN Mingyang, HU Meng, YNAG Yuan, FANG Yanming. Community classification, structures and species diversity characteristics of Pinus massoniana and P. hwangshanensis in the eastern China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 47-58. |
[2] | YAN Zhengming, RUAN Honghua, LIAO Jiahui, SHI Ke, NI Juanping, CAO Guohua, SHEN Caiqin, DING Xuenong, ZHAO Xiaolong, ZHUANG Xin. Abundance and diversity of soil beetles on the forest floor in different aged poplar plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 236-242. |
[3] | YIN Shixuan, WU Yongbo, HUANG Xiaoyu. Bird diversity in Jintan ecological redline areas of Changzhou City [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 219-225. |
[4] | GUO Lili, ZHANG Chenjie, WANG Fei, SHEN Jiajia, ZHANG Kaiyue, HE Lixia, GUO Qi, HOU Xiaogai. Analysis of bacterial community characteristics in the rhizosphere soil of wild tree peony [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 45-55. |
[5] | WANG Ziyue, ZHEN Yan, LIU Guangxin, XI Mengli. Assay for transposase-accessible chromatin with high-throughput sequencing and its application prospect in woody plants [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 1-10. |
[6] | DING Xiaolei, ZHANG Yue, LIN Sixi, YE Jianren. An overview of high-throughput sequencing techniques applied on Bursaphelenchus xylophilus [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 1-7. |
[7] | YI Xiangui, DONG Peng, XIE Chunping, PENG Zhiqi, YANG Guodong, DONG Jingjing, ZHONG Yuqian, ZHAI Feifei, WANG Xianrong. An analysis on species composition of a permanent plot on the Longchi Mountain, Yixing City, Jiangsu Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(6): 159-168. |
[8] | WANG Xuan, CUI Peng, DING Jingjing, CHANG Qing. Community structure and diversity of overwintering waterfowls in south coast of Jiangsu Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 178-184. |
[9] | CHEN Hongjian, HAO Dejun, TIAN Min, ZHOU Yang, XIA Xiaohong, ZHAO Xinyi, QIAO Heng, TAN Jiajin. The community structure and functional analysis of intestinal bacteria in Monochamus alternatus larvae reared indoors [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 143-151. |
[10] | ZHU Han, HAO Dejun, WEI Yuanzhi, SUN Lixin, WEN Quanmin. Community structure analyses of the intestine cultivable bacteria of Clostera restitura larvae [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(2): 171-176. |
[11] | JI Huai, HAN Jiangang, LI Pingping, ZHU Yongli, GUO Yanhui, HAO Daping, CUI Hao. Effects of different vegetation types on soil organic carbon particle size distribution and microbial community structure in Hongze Lake Wetland [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(1): 141-150. |
[12] | ZHOU Yongsheng, XU Ziheng, YUAN Fayin, SHANG Xulan, SUN Caoweng, FANG Shengzuo. Comparisons of community characteristics among three natural forests of Cyclocarya paliurus in the subtropical region of China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(1): 29-35. |
[13] | PAN Tingting, CHEN Lin, YANG Guodong, YI Xiangui, WANG Xianrong. Species diversity of communities and environmental interpretation of the suburban forest in Northern Nanjing [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 48-54. |
[14] | HUANG Jinsi, XI Xiaotong, DING Xiaolei, YE Jianren. Study on the population differentiation of Bursaphelenchus xylophilus in Guangdong Province by SNP markers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(6): 25-31. |
[15] | YI Xiangui, DING Hui, FANG Yanming, YE Yaoqing,CHEN Shuifei, WANG Xu, CONG Rui, ZHANG Kaiwen,LI Yao, WANG Xianrong. Species diversity of forest communities at different altitudes based on fixed plot in Huangshan Mountains [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(01): 149-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||