Effects of slow-release fertilization rates on seedling quality and field survival rates of four exotic oaks

WEI Ning, LI Guolei, CAI Mengxue, SHI Wenhui, LIU Wen, XUE Liu, LI Jinyu

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (3) : 53-60.

PDF(1905 KB)
PDF(1905 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (3) : 53-60. DOI: 10.12302/j.issn.1000-2006.201909002

Effects of slow-release fertilization rates on seedling quality and field survival rates of four exotic oaks

Author information +
History +

Abstract

【Objective】Oaks are widely distributed species which have high ornamental values. This study analyzes the effects of nitrogen rates on seedling growth, nutrient storage, non-structural carbon (NSC) content, and survival rates of four exotic oaks seedlings to explore the optimum nitrogen rate. These information is important for cultivating high quality seedlings of these four oaks. 【Method】 During the first growing season, Quercus robur, Q. coccinea, Q. rubra, Q. palustris seedlings were produced by applying five N fertilization application rates (25, 100, 150, 200 and 400 mg per seedling) by using a slow-release fertilizer. Seedling height, root-collar diameter (RCD), biomass, nutrient content and NSC content were measured at the end of the first growing season. At the beginning of the second growing season, seedlings were transplanted into the field and the survival rate was measured one year later. 【Result】 The height, RCD, biomass, nutrient content, starch content, and soluble sugar content of Q. robur seedlings reached a maximum with 200 mg per seedling applied, while the seedling biomass reduced with 400 mg per seedling applied. For Q. coccinea, height, RCD, biomass and soluble sugar content reached highest values with 150 mg per seedling applied while the nutrient content and starch content reached highest values with 200 mg per seedling applied. For Q. rubra, the nutrient content increased with the increasing of N applied and no significant difference showed in height, RCD, biomass and NSC content. For Q. palustris, RCD content increased significantly with the increasing of the fertilization rate. Height and biomass had no longer increase when N applied more than 100 mg per seedling. The nutrient content increased significantly among the fertilization treatments and no significant difference showed in NSC content. One year after transplantation, the highest survival rates of Q. palustris, Q. coccinea, Q. robur and Q. rubra were 95.0%, 30.0%, 55.0%, and 45.0%, respectively. 【Conclusion】 Based on the results at the first growing season, the optimum N rate for Q. robur one-year-old container seedling is 200 mg per seedling, while 150-200 mg per seedling for Q. coccinea. For Q. rubra and Q. palustris, the optimum N rates are higher than 400 mg per seedling. The survival rates of the four species were not affected by the fertilization treatments.

Key words

Quercus robur / Q. coccinea / Q. rubra / Q. palustris / slow-release fertilizer / seedling quality / survival rate

Cite this article

Download Citations
WEI Ning , LI Guolei , CAI Mengxue , et al . Effects of slow-release fertilization rates on seedling quality and field survival rates of four exotic oaks[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(3): 53-60 https://doi.org/10.12302/j.issn.1000-2006.201909002

References

[1]
VILLAR-SALVADOR P, PEÑUELAS J, NICOLÁS-PERAGÓN J, et al. Is nitrogen fertilization in the nursery a suitable tool for enhancing the performance of Mediterranean oak plantations?[J]. New For, 2013,44(5):733-751.DOI: 10.1007/s11056-013-9374-8.
[2]
SCHMAL J, JACOBS D, O’REILLY C.Nitrogen budgeting and quality of exponentially fertilized Quercus robur seedlings in Ireland[J]. Eur J For Res, 2011,130(4):557-567.DOI: 10.1007/s10342-010-0443-7.
[3]
TRUBAT R, CORTINA J, VILAGROSA A. Nursery fertilization affects seedling traits but not field performance in Quercus suber L.[J]. J Arid Environ, 2010,74(4):491-497.DOI: 10.1016/j.jaridenv.2009.10.007.
[4]
LANDIS T D. Mineral nutrients and fertilization in the container tree nursery manual [R]. Washington D C: Department of Agricultural, 1989.
[5]
FOLK R, CROSSNICKLE S C. Determining field performance potential with the use of limiting environmental conditions[J]. New For, 1997,13(1/3):121-138.DOI: 10.1023/a:1006514805052.
[6]
GROSSNICKLE S C, MACDONALD J E. Why seedlings grow: influence of plant attributes[J]. New For, 2018,49(1):1-34.DOI: 10.1007/s11056-017-9606-4.
[7]
USCOLA M, VILLAR-SALVADOR P, GROSS P, et al. Fast growth involves high dependence on stored resources in seedlings of Mediterranean evergreen trees[J]. Ann Bot, 2015,115(6):1001-1013.DOI: 10.1093/aob/mcv019.
[8]
VILLAR-SALVADOR P, PLANELLES R, ENRQUEZ E, et al. Nursery cultivation regimes,plant functional attributes,and field performance relationships in the Mediterranean oak Quercus ilex L.[J]. For Ecol Manag, 2004,196(2/3):257-266.DOI: 10.1016/j.foreco.2004.02.061.
[9]
李国雷, 刘勇, 祝燕, 等. 国外容器苗质量调控技术研究进展[J]. 林业科学, 2012,48(8):135-142.
LI G L, LIU Y, ZHU Y, et al. A review on the abroad studies of techniques in regulating quality of container seedling[J]. Sci Silva Sin, 2012,48(8):135-142.DOI: 10.11707/j.1001-7488.20120822.
[10]
OLIET J, PLANELLES R, SEGURA M L, et al. Mineral nutrition and growth of containerized Pinus halepensis seedlings under controlled-release fertilizer[J]. Sci Hortic, 2004,103(1):113-129.DOI: 10.1016/j.scienta.2004.04.019.
[11]
OLIET J A, PLANELLES R, ARTERO F, et al. Field performance of Pinus halepensis planted in Mediterranean arid conditions:relative influence of seedling morphology and mineral nutrition[J]. New For, 2009,37(3):313-331.DOI: 10.1007/s11056-008-9126-3.
[12]
MALIK V, TIMMER V R. Biomass partitioning and nitrogen retranslocation in black spruce seedlings on competitive mixedwood sites:a bioassay study[J]. Can J For Res, 1998,28(2):206-215.DOI: 10.1139/cjfr-28-2-206.
[13]
SALIFU K F, TIMMER V R. Optimizing nitrogen loading of Picea mariana seedlings during nursery culture[J]. Can J For Res, 2003,33(7):1287-1294.DOI: 10.1139/x03-057.
[14]
李国雷, 刘勇, 祝燕, 等. 苗木稳态营养加载技术研究进展[J]. 南京林业大学学报(自然科学版), 2011,35(2):117-123.
LI G L, LIU Y, ZHU Y, et al. Study of techniques for steady-state nutrition supply of seedlings[J]. J Nanjing For Univ(Nat Sci Ed), 2011,35(2):117-123.DOI: 10.3969/j.issn.1000-2006.2011.02.025.
[15]
刘欢, 王超琦, 吴家森, 等. 氮素指数施肥对杉木无性系苗生长及养分含量的影响[J]. 应用生态学报, 2016,27(10):3123-3128.
LIU H, WANG C Q, WU J S, et al. Effects of exponential N fertilization on the growth and nutrient content in clonal Cunninghamia lanceolata seedlings[J]. Chin J Appl Ecol, 2016,27(10):3123-3128.DOI: 10.13287/j.1001-9332.201610.027.
[16]
林平, 邹尚庆, 李国雷, 等. 油松容器苗生长和氮吸收对指数施肥的响应[J]. 南京林业大学学报(自然科学版), 2013,37(3):23-28.
LIN P, ZOU S Q, LI G L, et al. Response of growth and N uptake of Pinus tabulaeformis container seedlings to exponential fertilization[J]. J Nanjing For Univ(Nat Sci Ed), 2013,37(3):23-28.DOI: 10.3969/j.issn.1000-2006.2013.03.005.
[17]
JOHNSON P S, SHIFLEY S R, ROGERS R. The ecology and silviculture of oaks[M]. Wallingford:CABI, 2009.DOI: 10.1079/9781845934743.0000.
[18]
黄利斌. 北美栎树引种栽培技术研究[D]. 南京:南京林业大学, 2007.
HUANG L B. Studies on introduction and planting of north American oak[D]. Nanjing:Nanjing Forestry University, 2007.
[19]
陈益泰, 孙海菁, 王树凤, 等. 5种北美栎树在我国长三角地区的引种生长表现[J]. 林业科学研究, 2013,26(3):344-351.
CHEN Y T, SUN H J, WANG S F, et al. Growth performances of five north American oak species in Yangzi River Delta of China[J]. For Res, 2013,26(3):344-351.DOI: 10.3969/j.issn.1001-1498.2013.03.013.
[20]
李国雷, 祝燕, 蒋乐, 等. 指数施肥对栓皮栎容器苗生长和氮积累的影响[J]. 东北林业大学学报, 2012,40(11):6-9.
LI G L, ZHU Y, JIANG L, et al. Effect of exponential fertilization on growth and nitrogen storage of containerized Quercus variabilis seedlings[J]. J Northeast For Univ, 2012,40(11):6-9.DOI: 10.3969/j.issn.1000-5382.2012.11.002.
[21]
USCOLA M, SALIFU K F, OLIET J A, et al. An exponential fertilization dose-response model to promote restoration of the Mediterranean oak Quercus ilex[J]. New Forest, 2015,46(5/6):795-812.DOI: 10.1007/s11056-015-9493-5.
[22]
姚光刚, 李国雷, 郑永林, 等. 缓释肥施用量对槲栎容器苗苗木质量的影响[J]. 南京林业大学学报(自然科学版), 2019,43(1):69-75.
YAO G G, LI G L, ZHENG Y L, et al. Effects of slow-release fertilizer rate on the quality of Quercus aliena container seedlings[J]. J Nanjing For Univ(Nat Sci Ed), 2019,43(1):69-75.DOI: 10.3969/j.issn.1000-2006.201801025.
[23]
SALIFU K F, JACOBS D F. Characterizing fertility targets and multi-element interactions in nursery culture of Quercus rubra seedlings[J]. Ann For Sci, 2006,63(3):231-237.DOI: 10.1051/forest:2006001.
[24]
BIRGE Z K D, SALIFU K F, JACOBS D F. Modified exponential nitrogen loading to promote morphological quality and nutrient storage of bareroot-cultured Quercus rubra and Quercus alba seedlings[J]. Scand J For Res, 2006,21(4):306-316.DOI: 10.1080/02827580600761611.
[25]
鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
BAO S D. Soil and agricultural chemistry analysis[M]. Beijing: China Agriculture Press, 2000.
[26]
程中倩, 李国雷. 氮肥和容器深度对栓皮栎容器苗生长、根系结构及养分贮存的影响[J]. 林业科学, 2016,52(4):21-29.
CHENG Z Q, LI G L. Effects of nitrogen supply and container size on seedling growth,root characteristics,and nutrient status in Quercus variabilis container seedlings[J]. Sci Silvae Sin, 2016,52(4):21-29.DOI: 10.11707/j.1001-7488.20160403.
[27]
SALIFU K F, JACOBS D F, BIRGE Z K D. Nursery nitrogen loading improves field performance of bareroot oak seedlings planted on abandoned mine lands[J]. Restor Ecol, 2009,17(3):339-349.DOI: 10.1111/j.1526-100X.2008.00373.x.
[28]
李国雷, 祝燕, 李庆梅, 等. 红松苗龄型对苗木质量和造林效果的影响[J]. 林业科学, 2012,48(1):35-41.
LI G L, ZHU Y, LI Q M, et al. Effect of seedling age on the seedling quality and field performance of Pinus koraiensis[J]. Sci Silvae Sin, 2012,48(1):35-41.DOI: 10.11707/j.1001-7488.20120107.
[29]
祁鲁玉, 吴峰, 吴瑞雪, 等. 遮阴和不同形态氮素施肥对红松幼苗生长的影响[J]. 森林工程, 2019,35(4):1-5.
QI L Y, WU F, WU R X, et al. Effects of shading and different forms of nitrogen fertilization on the growth of Pinus koraiensis seedlings[J]. Forest Engineering, 2019,35(4):1-5.
[30]
胡丁猛, 臧真荣, 王开芳, 等. 不同水肥对猩红栎轻基质容器苗生长的影响[J]. 山东农业科学, 2012,44(12):54-56.
HU D M, ZANG Z R, WANG K F, et al. Effects of different fertilization and irrigation treatments on seedling growth of Quercus coccinea in containers with light substrates[J]. Shandong Agric Sci, 2012,44(12):54-56.DOI: 10.3969/j.issn.1001-4942.2012.12.015.
[31]
MILLARD P, GRELET G A. Nitrogen storage and remobilization by trees:ecophysiological relevance in a changing world[J]. Tree Physiol, 2010,30(9):1083-1095.DOI: 10.1093/treephys/tpq042.
[32]
梁建萍, 贾小云, 刘亚令, 等. 干旱胁迫对蒙古黄芪生长及根部次生代谢物含量的影响[J]. 生态学报, 2016,36(14):4415-4422.
LIANG J P, JIA X Y, LIU Y L, et al. Effects of drought stress on seedling growth and accumulation of secondary metabolites in the roots of Astragalus membranaceus var. mongholicus[J]. Acta Ecol Sin, 2016,36(14):4415-4422.DOI: 10.5846/stxb201412162507.
[33]
段世宇. 施氮对毛白杨生长及养分含量的影响[J]. 江苏林业科技, 2019,46(4):9-12.
DUAN S Y. Effects of different nitrogen application rates on the growth and nutrient content of Populus tomentosa Carrière[J]. Journal of Jiangsu Forestry Science & Technology, 2019,46(4):9-12. DOI: 10.3969/j.issn.1001-7380.2019.04.002.
[34]
VILLAR-SALVADOR P, USCOLA M, JACOBS D F. The role of stored carbohydrates and nitrogen in the growth and stress tolerance of planted forest trees[J]. New For, 2015,46(5/6):813-839. DOI: 10.1007/s11056-015-9499-z.
[35]
RAMÍREZ-VALIENTE J, ARANDA I, SANCHÉZ-GÓMEZ D, et al. Increased root investment can explain the higher survival of seedlings of ‘Mesic’Quercus suber than ‘Xeric’Quercus ilex in sandy soils during a summer drought[J]. Tree Physiol, 2019,39(1):64-75.DOI: 10.1093/treephys/tpy084.
[36]
于德林, 王冬, 刘晓菊, 等. 熊岳树木园栎类树种引种栽培及育苗技术[J]. 辽宁林业科技, 2017,(6):62-65.
YU D L, WANG D, LIU X J, et al. Introduction and cultivation techniques of oaks in Xiongyue Arboretum[J]. Liaoning For Sci Technol, 2017(6):62-65.DOI: 10.3969/j.issn.1001-1714.2017.06.019.
[37]
杨振亚, 台秀国, 曹振玉, 等. 4个引种栎类树种苗期抗寒性初步研究[J]. 山东大学学报(理学版), 2016,51(5):43-47,60.
YANG Z Y, TAI X G, CAO Z Y, et al. A preliminary study on cold resistance of four introduced oaks seedlings[J]. J Shandong Univ Nat Sci, 2016,51(5):43-47,60.DOI: 10.6040/j.issn.1671-9352.0.2015.573.

RIGHTS & PERMISSIONS

Copyright reserved © 2021
PDF(1905 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/