Allocation of non-structural carbohydrates (NSC) contents in leaves and branches of Quercus variabilis during its growth process

WEI Longxin, ZHANG Yiping, LI Yijie, ZHANG Yuru

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (2) : 96-102.

PDF(1592 KB)
PDF(1592 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (2) : 96-102. DOI: 10.12302/j.issn.1000-2006.201909029

Allocation of non-structural carbohydrates (NSC) contents in leaves and branches of Quercus variabilis during its growth process

Author information +
History +

Abstract

【Objective】Non-structural carbohydrates (NSC) are important carbon reserves in trees, which are good indicators of tree carbon surplus or shortage stored. Research into the allocation of NSC contents among tree tissues will help to understand the mechanisms of carbon allocation within trees. This provides a scientific basis for further evaluation of the carbon sequestration potential of forest communities. 【Method】We conducted a field observational study by monitoring the NSC concentrations in the leaves and branches of Chinese cork oak (Quercus variabilis), and by synchronously observing the leaf phenology of those trees in some uneven-aged secondary oak forests growing in the east Qinling Mountain Range. By measuring the leaf length and fitting the leaf growth curve with the Gompertz function, the specific dates of the main phenological stages of leaves can be obtained. Sampling intervals were set semi-monthly/monthly during the leaf unfolding period from March to May, and monthly or bimonthly during the trees’ full growing season from June to November. The time series of observations and sampling spanned from May 2016 to June 2017. The content of NSC and its components in the leaves and branches of Q. variabilis was determined by the anthranone-sulfuric acid method. 【Result】① The dynamics of the content of NSC and its components in leaves and branches of Q. variabilis varied significantly with seasonal rhythms (P < 0.05). The average NSC content (mass fraction) in the leaves (8.94%) was higher than that in the branches (7.90%). ② The composition of NSC in leaves and branches of Q. variabilis was mainly soluble sugar, and comprised 62.5% and 63.5%, respectively. This physiological feature might be a life strategy for Q. variabilis, a deciduous tree species growing typically in the warm temperate zone, to survive in the local environment. ③ Significant differences in the NSC contents and their components between leaves and branches were observed mainly in the early (April-June) and late (October) growing seasons. Before entering the growing season, the NSC content of branches dropped rapidly to supply energy to bud-break and leaf development. In contrast, the leaves began to accumulate NSC by photosynthesis. In the late growing season, branches were inclined to store carbon to reconstruct the canopy for the next year. While, photosynthesis of leaves was reduced. ④ The Pearson correlation coefficients of the NSC content and their components between leaves and branches were not significant except for the ratio of soluble sugar to starch. The variation trend of NSC contents in leaves and branches was highly positive (R=0.986, P < 0.001) in the early growing season (March-June), but there was a time lag of 15-20 days.【Conclusion】It could be inferred that the distribution relationship of NSC contents between leaves and branches of Q. variabilis is not linear, but most likely non-linear. Therefore, when estimating the carbon sequestration potential of Q. variabilis, the nonlinear relationship of carbon distribution among different tissues should be comprehensively considered.

Key words

Quercus variabilis / non-structural carbohydrates (NSC) / soluble sugar / starch / leaf / branch / carbon distribution

Cite this article

Download Citations
WEI Longxin , ZHANG Yiping , LI Yijie , et al. Allocation of non-structural carbohydrates (NSC) contents in leaves and branches of Quercus variabilis during its growth process[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(2): 96-102 https://doi.org/10.12302/j.issn.1000-2006.201909029

References

[1]
潘庆民, 韩兴国, 白永飞, 等. 植物非结构性贮藏碳水化合物的生理生态学研究进展[J]. 植物学通报, 2002,19(1):30-38.
PAN Q M, HAN X G, BAI Y F, et al. Advances in physiology and ecology studies on stored non-structure carbohydrates in plants[J]. Chin Bull Bot, 2002,19(1):30-38. DOI: 10.3969/j.issn.1674-3466.2002.01.004.
[2]
张海燕. 中国温带森林12个树种树干和树枝的非结构性碳时空变异[D]. 哈尔滨: 东北林业大学, 2013.
ZHANG H Y. Spatiotemporal variability in non-structural carbohydrates of stem and branch for twelve tree species in Chinese temperate forest[D]. Harbin: Northeast Forestry University, 2013.
[3]
KÖRNER C. Carbon limitation in trees[J]. J Ecol, 2003,91(1):4-17. DOI: 10.1046/j.1365-2745.2003.00742.x.
[4]
LI M H, HOCH G, KÖRNER C. Spatial variability of mobile carbohydrates within Pinus cembra trees at the alpine tree line[J]. Phyton-Ann Rei Bot, 2001,41(2):203-213. DOI: 10.1078/0944-7113-00019.
[5]
FAJARDO A, PIPER F I, PFUND L, et al. Variation of mobile carbon reserves in trees at the alpine treeline ecotone is under environmental control[J]. New Phytol, 2012,195(4):794-802. DOI: 10.1111/j.1469-8137.2012.04214.x.
[6]
MYERS J A, KITAJIMA K. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest[J]. J Ecol, 2007,95(2):383-395. DOI: 10.1111/j.1365-2745.2006.01207.x.
[7]
王文娜, 李俊楠, 王会仁, 等. 不同树种叶片非结构性碳水化合物季节动态比较[J]. 东北林业大学学报, 2014,42(4):46-49,108.
WANG W N, LI J N, WANG H R, et al. Seasonal dynamics of leaf nonstructural carbohydrate content in four temperate tree species[J]. J Northeast For Univ, 2014,42(4):46-49,108. DOI: 10.13759/j.cnki.dlxb.2014.04.010.
[8]
刘万德, 苏建荣, 李帅锋, 等. 云南普洱季风常绿阔叶林主要树种非结构性碳水化合物变异分析[J]. 林业科学, 2017,53(6):1-9.
LIU W D, SU J R, LI S F, et al. Variation of non-structural carbohydrates for the dominant species in a monsoon broad-leaved evergreen forest in Pu’er, Yunnan Province[J]. Sci Silva Sin, 2017,53(6):1-9. DOI: 10.11707/j.1001-7488.20170601.
[9]
印婧婧, 郭大立, 何思源, 等. 内蒙古半干旱区树木非结构性碳、氮、磷的分配格局[J]. 北京大学学报(自然科学版), 2009,45(3):519-527.
YIN J J, GUO D L, HE S Y, et al. Non-structural carbohydrate,N,and P allocation patterns of two temperate tree species in a semi-arid region of Inner Mongolia[J]. Acta Sci Nat Univ Pekin, 2009,45(3):519-527. DOI: 10.13209/j.0479-8023.2009.077.
[10]
王彪, 江源, 王明昌, 等. 芦芽山不同海拔白杄非结构性碳水化合物含量动态[J]. 植物生态学报, 2015,39(7):746-752.
WANG B, JIANG Y, WANG M C, et al. Variations of non-structural carbohydrate concentration of Picea meyeri at different elevations of Luya Mountain,China[J]. Chin J Plant Ecol, 2015,39(7):746-752. DOI: 10.17521/cjpe.2015.0071.
[11]
邓云鹏. 不同纬度栓皮栎非结构性碳水化合物和营养元素含量研究[D]. 北京: 中国林业科学研究院, 2016.
DENG Y P. Nonstructural carbohydrates and nutrient element concentrations of Quercus variabilis of different latitude[D]. Beijing: Chinese Academy of Forestry, 2016.
[12]
KLEIN T, VITASSE Y, HOCH G. Coordination between growth, phenology and carbon storage in three coexisting deciduous tree species in a temperate forest[J]. Tree Physiol, 2016,36(7):847-855. DOI: 10.1093/treephys/tpw030.
[13]
PALACIO S, MILLA R, ALBUIXECH J, et al. Seasonal variability of dry matter content and its relationship with shoot growth and nonstructural carbohydrates[J]. New Phytol, 2008,180(1):133-142. DOI: 10.1111/j.1469-8137.2008.02569.x.
[14]
ZHANG Y P, XU J L, SU W, et al. Spring precipitation effects on formation of first row of earlywood vessels in Quercus variabilis at Qinling Mountain (China)[J]. Trees, 2019,33(2):457-468. DOI: 10.1007/s00468-018-1792-y.
[15]
欧阳明, 杨清培, 祁红艳, 等. 亚热带落叶与常绿园林树种非结构性碳水化合物的季节动态比较[J]. 南京林业大学学报(自然科学版), 2014,38(2):105-110.
OUYANG M, YANG Q P, QI H Y, et al. A comparison of seasonal dynamics of nonstructural carbohydrates for deciduous and evergreen landscape trees in subtropical region,China[J]. J Nanjing For Univ (Nat Sci Ed), 2014,38(2):105-110. DOI: 10.3969/j.issn.1000-2006.2014.02.020.
[16]
徐钰, 许凯, 王文娟, 等. 不同林龄杨树细根糖化学组分对氮沉降的响应[J]. 南京林业大学学报(自然科学版), 2014,38(3):13-18.
XU Y, XU K, WANG W J, et al. The response of carbohydrates compositions in fine root of poplar at different ages to nitrogen depositions[J]. J Nanjing For Univ (Nat Sci Ed), 2014,38(3):13-18. DOI: 10.3969/j.issn.1000-2006.2014.03.003.
[17]
李娜妮, 何念鹏, 于贵瑞. 中国4种典型森林中常见乔木叶片的非结构性碳水化合物研究[J]. 西北植物学报, 2015,35(9):1846-1854.
LI N N, HE N P, YU G R. Non-structural carbohydrates in leaves of tree species from four typical forests in China[J]. Acta Bot Boreali-Occidentalia Sin, 2015,35(9):1846-1854. DOI: 10.7606/j.issn.1000-4025.2015.09.1846.
[18]
白婷, 喻方圆, ROBERT D G. 不同种源北美香脂杨苗木碳水化合物积累差异分析[J]. 西南林业大学学报, 2014,34(1):27-30.
BAI T, YU F Y, ROBERT D G. Analysis on difference in carbohydrate accumulation in Populus balsamifera seedlings among different provenance[J]. J Southwest For Univ, 2014,34(1):27-30. DOI: 10.3969/j.issn.2095-1914.2014.01.005.
[19]
曹新向, 丁圣彦, 李昊民. 河南省洛宁县全宝山国有林场植被的调查分析[J]. 河南科学, 2003,21(2):183-186.
CAO X X, DING S Y, LI H M. A study on vegetation in the state-owned tree farm of Quanbao Mountain in Luoning County,Henan Province[J]. Henan Sci, 2003,21(2):183-186. DOI: 10.13537/j.issn.1004-3918.2003.02.016.
[20]
ROSSI S, RATHGEBER C B K, DESLAURIERS A. Comparing needle and shoot phenology with xylem development on three conifer species in Italy[J]. Ann For Sci, 2009,66:206-213. DOI: 10.1051/forest/2008088.
[21]
ZHANG Y P, JIANG Y, WEN Y, et al. Comparing primary and secondary growth of co-occurring deciduous and evergreen conifers in an alpine habitat[J]. Forests, 2019,10:574-588. DOI: 10.3390/f10070574.
[22]
章异平, 曹鹏鹤, 徐军亮, 等. 秦岭东段栓皮栎叶片非结构性碳水化合物含量的季节动态[J]. 生态学报, 2019,39(19):7274-7282.
ZHANG Y P, CAO P H, XU J L, et al. Seasonal dynamics of non-structural carbohydrate contents in leaves of Quercus variabilis growing in the east Qinling Mountain range[J]. Acta Ecol Sin, 2019,39(19):7274-7282. DOI: 10.5846/stxb201808091693.
[23]
姚光刚, 李国雷, 郑永林, 等. 缓释肥施用量对槲栎容器苗苗木质量的影响[J]. 南京林业大学学报(自然科学版), 2019,43(1):69-75.
YAO G G, LI G L, ZHENG Y L, et al. Effects of slow-release fertilizer rate on the quality of Quercus aliena container seedlings[J]. J Nanjing For Univ (Nat Sci Ed), 2019,43(1):69-75. DOI: 10.3969/j.issn.1000-2006.201801025.
[24]
汤绍虎, 罗充. 植物生理学实验教程[M]. 重庆: 西南师范大学出版社, 2012.
TANG S H, LUO C. Plant physiology experiment[M]. Chongqing: Southwest China Normal University Press, 2012.
[25]
KEEL S G, SCHÄDEL C. Expanding leaves of mature deciduous forest trees rapidly become autotrophic[J]. Tree Physiol, 2010,30(10):1253-1259.DOI: 10.1093/treephys/tpq071.
[26]
MARTÍNEZ-VILALTA J, SALA A, ASENSIO D, et al. Dynamics of non-structural carbohydrates in terrestrial plants: a global synjournal[J]. Ecol Monogr, 2016,86(4):495-516. DOI: 10.1002/ecm.1231.
[27]
于丽敏, 王传宽, 王兴昌. 三种温带树种非结构性碳水化合物的分配[J]. 植物生态学报, 2011,35(12):1245-1255.
YU L M, WANG C K, WANG X C. Allocation of nonstructural carbohydrates for three temperate tree species in Northeast China[J]. Chin J Plant Ecol, 2011,35(12):1245-1255. DOI: 10.3724/SP.J.1258.2011.01245.
[28]
刘万德, 苏建荣, 李帅锋, 等. 云南普洱季风常绿阔叶林不同林层非结构性碳水化合物特征[J]. 应用生态学报, 2018,29(3):775-782.
LIU W D, SU J R, LI S F, et al. Non-structural carbohydrates characteristics of different forest layers in monsoon broad-leaved evergreen forest in Pu’er, Yunnan Province[J]. Chin J Appl Ecol, 2018,29(3):775-782. DOI: 10.13287/j.1001-9332.201803.005.
[29]
SALA A, WOODRUff D R, MEINZER F C. Carbon dynamics in trees: feast or famine?[J]. Tree Physiol, 2012,32(6):764-775. DOI: 10.1093/treephys/tpr143.
[30]
SCHELLENBAUM L, SPRENGER N, SCHÜEPP H. Effects of drought, transgenic expression of a fructan synthesizing enzyme and of mycorrhizal symbiosis on growth and soluble carbohydrate pools in tobacco plants[J]. New Phytol, 1999,142(1):67-77. DOI: 10.1046/j.1469-8137.1999.00376.x.
[31]
周永斌, 吴栋栋, 于大炮, 等. 长白山不同海拔岳桦非结构碳水化合物含量的变化[J]. 植物生态学报, 2009,33(1):118-124.
ZHOU Y B, WU D D, YU D P, et al. Variations of nonstructural carbohydrate content in Betula ermanii at different elevations of Changbai Mountain, China[J]. Chin J Plant Ecol, 2009,33(1):118-124. DOI: 10.3773/j.issn.1005-264x.2009.01.013.

RIGHTS & PERMISSIONS

Copyright reserved © 2021
PDF(1592 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/