Responses of morphology and vertical distribution of fine roots in Sapindus mukorossi to formula fertilization

WANG Fugen, WEI Xingbiao, ZHAO Guochun, JIA Liming

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (4) : 58-66.

PDF(1761 KB)
PDF(1761 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (4) : 58-66. DOI: 10.12302/j.issn.1000-2006.201910007

Responses of morphology and vertical distribution of fine roots in Sapindus mukorossi to formula fertilization

Author information +
History +

Abstract

【Objective】This study aimed to investigate the root distribution characteristics and morphological differences in soapberry (Sapindus mukorossi) under different fertilization treatments. We also aimed to analyze the effects of nitrogen (N), phosphorus (P) and potassium (K) on the fine root growth and their interactions, so as to provide a support for the scientific cultivation of S. mukorossi, which is a widely planted biomass species in Southern China. 【Method】Using the eight-year-old forest in Jianning County, Sanming City in Fujian Province, as the research object, three levels of N, P and K fertilizers were set and a total of 14 treatments were conducted using the “3414” randomized block design. Among them, using no fertilization as the blank control (CK), three blocks were set up with 42 treatment plots and five trees per plot as repetition. At the end of the growing season in 2015, before the blooming period in 2016 and during the rapid growth period of fruits in 2016, fertilizer was applied in ditches, according to the specified proportions, in three rounds. In December 2016, four standard wood samples were selected from each treatment plot. Soil column samples were collected in three layers (0-20 cm, ≥20-40 cm and ≥40-60 cm) at a distance of 1 m from the trees. The distribution and morphology of the fine roots in the three soil layers of each treatment were studied. 【Result】The fine roots were mainly distributed within the 0-20 cm soil layer and gradually declined in the other two layers. The fine root biomass (FRB) and length density (FRLD) of the 0-20 cm layer were 1.51-2.52 times and 1.82-2.25 times higher, respectively, than the ≥20-40 cm soil layer, and 6.29-13.17 times and 6.03-9.31 times, respectively, compared to those of the ≥40-60 cm soil layer. FRB, FRLD, fine root surface area (FRSA), and fine root average diameter (FRAD) tended to increase initially and then decrease before becoming steady as the N, P and K fertilizer rates increased. Meanwhile, with the increase in fertilization, specific root length (SRL) decreased initially, before increasing sharply, and then decreasing steadily. Compared to CK, the FRB and FRLD of the N2P2K2 treatment clearly increased by 152% and 164%, respectively, in the 0-20 cm soil layer. Meanwhile, the FRB and FRLD also evidently increased by 242% and 161%, respectively, in the ≥20-40 cm soil layer, and significantly increased by 385% and 135%, respectively, in the ≥40-60 cm soil layer (P<0.05). 【Conclusion】 The FRB, FRLD and FRSA of S. mukorossi decreased gradually and had obvious vertical distribution characteristics in the 0-60 cm soil layer. Under the condition of P deficiency, N and K fertilizers were less effective on the root growth, and it was necessary to increase soil nutrient availa-bility to promote the fine root growth and biomass accumulation to some degree. When the amount of fertilizer was sufficient, this species could adjust the distribution structure of fine roots according to the availability of soil nutrient resources in the ≥40-60 cm layer and fully absorb nutrients. The interaction between N and P had a significant effect on the FRB, FRLD, FRAD and SRL, and was significantly correlated with the growth rate of fine roots. The fitting model of fine roots proposed that the most ideal amount of fertilization is N 693, P 321 and K 432 kg/hm2.

Key words

soapberry (Sapindus mukorossi) / nitrogen / phosphorus / potassium / formula fertilization / fine root morpho-logy / fine root vertical distribution

Cite this article

Download Citations
WANG Fugen , WEI Xingbiao , ZHAO Guochun , et al. Responses of morphology and vertical distribution of fine roots in Sapindus mukorossi to formula fertilization[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(4): 58-66 https://doi.org/10.12302/j.issn.1000-2006.201910007

References

[1]
贾黎明, 孙操稳. 生物柴油树种无患子研究进展[J]. 中国农业大学学报, 2012, 17(6):191-196.
JIA L M, SUN C W. Research progress of biodiesel tree Sapindus mukorossi[J]. J China Agric Univ, 2012, 17(6):191-196.
[2]
刘济铭, 孙操稳, 何秋阳, 等. 国内外无患子属种质资源研究进展[J]. 世界林业研究, 2017, 30(6):12-18.
LIU J M, SUN C W, HE Q Y, et al. Research progress in Sapindus L. germplasm resources[J]. World For Res, 2017, 30(6):12-18.DOI: 10.13348/j.cnki.sjlyyj.2017.0071.y.
[3]
孙操稳, 贾黎明, 叶红莲, 等. 无患子果实经济性状地理变异评价及与脂肪酸成分相关性[J]. 北京林业大学学报, 2016, 38(12):73-83
. SUN C W, JIA L M, YE H L, et al. Geographic varia-tion evaluating and correlation with fatty acid composition of economic characters of Sapindus spp. fruits[J]. J Beijing For Univ, 2016, 38(12):73-83.DOI: 10.13332/j.1000-1522.20160143.
[4]
SUN C W, WANG J W, DUAN J, et al. Association of fruit and seed traits of Sapindus mukorossi germplasm with environmental factors in Southern China[J]. Forests, 2017, 8(12):491.DOI: 10.3390/f8120491.
[5]
邵文豪, 刁松锋, 董汝湘, 等. 无患子种实形态及经济性状的地理变异[J]. 林业科学研究, 2013, 26(5):603-608.
SHAO W H, DIAO S F, DONG R X, et al. Study on geographic variation of morphology and economic character of fruit and seed of Sapindus mukorossi[J]. For Res, 2013, 26(5):603-608.DOI: 10.13275/j.cnki.lykxyj.2013.05.012.
[6]
刁松锋, 邵文豪, 姜景民, 等. 基于种实性状的无患子优良单株选择[J]. 东北林业大学学报, 2014, 42(4):6-10,45.
DIAO S F, SHAO W H, JIANG J M, et al. Superior individual selection of Sapindus mukorossi based on fruit and seed traits[J]. J Northeast For Univ, 2014, 42(4):6-10,45.DOI: 10.3969/j.issn.1000-5382.2014.04.002.
[7]
高媛, 贾黎明, 苏淑钗, 等. 无患子物候及开花结果特性[J]. 东北林业大学学报, 2015, 43(6):34-40,123.
GAO Y, JIA L M, SU S C, et al. Phenology and blossom-fruiting characteristics of Sapindus mukorossi[J]. J Northeast For Univ, 2015, 43(6):34-40,123.DOI: 10.13759/j.cnki.dlxb.20150522.062.
[8]
高媛, 贾黎明, 高世轮, 等. 无患子树体合理光环境及高光效调控[J]. 林业科学, 2016, 52(11):29-38.
GAO Y, JIA L M, GAO S L, et al. Reasonable canopy light intensity and high light efficiency regulation of Sapindus mukorossi[J]. Sci Silvae Sin, 2016, 52(11):29-38.DOI: 10.11707/j.1001-7488.20161104.
[9]
张赟齐, 刘晨, 刘阳, 等. 叶幕微域环境对无患子果实产量和品质的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(5):189-198.
ZHANG Y Q, LIU C, LIU Y, et al. Effects of canopy micro-environment on fruit yield and quality characteristics of Sapindus mukorossi[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(5):189-198.DOI: 10.3969/j.issn.1000-2006.202001031.
[10]
杨众家. 不同氮磷钾处理对无患子幼龄林生长影响研究[J]. 安徽农学通报, 2011, 17(5):131-132.
YANG Z J. Effects of different N, P and K treatments on the growth of Sapindus mukorossi[J]. Anhui Agric Sci Bull, 2011, 17(5):131-132.DOI: 10.16377/j.cnki.issn1007-7731.2011.05.078.
[11]
汪春芬, 韦继光, 於虹, 等. 控释肥施用量对兔眼蓝浆果叶片和栽培基质渗出液中养分含量及植株生长的影响[J]. 植物资源与环境学报, 2019, 28(2):79-87.
WANG C F, WEI J G, YU H, et al. Effects of controlled release fertilizer application amount on nutrient contents in leaf and exudate from culture substrate and plant growth of Vaccinium ashei[J]. J Plant Resour Environ, 2019, 28(2):79-87.DOI: 10.3969/j.issn.1674-7895.2019.02.11.
[12]
白由路, 杨俐苹. 我国农业中的测土配方施肥[J]. 土壤肥料, 2006(2):3-7.
BAI Y L, YANG L P. Soil testing and fertilizer re-commendation in Chinese agriculture[J]. Soils Fertil, 2006(2):3-7.DOI: 10.3969/j.issn.1673-6257.2006.02.001.
[13]
张福锁. 测土配方施肥技术要览[M]. 北京: 中国农业大学出版社, 2006.
ZHANG F S. Overview of soil testing formula fertilization technology[M]. Beijing: China Agricultural university Press, 2006.
[14]
陈祖瑶, 杨华, 郑元红, 等. 威宁红富士苹果测土配方施肥效应研究[J]. 江西农业学报, 2012, 24(6):105-107.
CHEN Z Y, YANG H, ZHENG Y H, et al. Research on effect of soil test and formulated fertilization for ‘red fuji’ apple in Weining[J]. Acta Agric Jiangxi, 2012, 24(6):105-107.DOI: 10.3969/j.issn.1001-8581.2012.06.032.
[15]
陈永忠, 彭邵锋, 王湘南, 等. 油茶高产栽培系列技术研究:配方施肥试验[J]. 林业科学研究, 2007, 20(5):650-655.
CHEN Y Z, PENG S F, WANG X N, et al. Study of high yield cultivation technologies of oil-tea Camellia (Camellia oleifera):formulate fertilization[J]. For Res, 2007, 20(5):650-655.DOI: 10.3321/j.issn:1001-1498.2007.05.010.
[16]
KUCHENBUCH R O, INGRAM K T, BUCZKO U. Effects of decreasing soil water content on seminal lateral roots of young maize plants[J]. J Plant Nutr Soil Sci, 2006, 169(6):841-848.DOI: 10.1002/jpln.200420421.
[17]
黄林, 王峰, 周立江, 等. 不同森林类型根系分布与土壤性质的关系[J]. 生态学报, 2012, 32(19):6110-6119.
HUANG L, WANG F, ZHOU L J, et al. Root distribution in the different forest types and their relationship to soil properties[J]. Acta Ecol Sin, 2012, 32(19):6110-6119.DOI: 10.5846/stxb201108281254.
[18]
ZHOU Z C, SHANGGUAN Z P. Vertical distribution of fine roots in relation to soil factors in Pinus tabulaeformis Carr.forest of the Loess Plateau of China[J]. Plant Soil, 2007, 291(1/2):119-129.DOI: 10.1007/s11104-006-9179-z.
[19]
梅莉, 王政权, 程云环, 等. 林木细根寿命及其影响因子研究进展[J]. 植物生态学报, 2004, 28(5):704-710.
Abstract
细根周转要消耗大量的C,它影响森林生态系统C分配格局与过程和养分循环,对生态系统生产力具有重要意义。细根的周转取决于细根的寿命,细根寿命越短,周转越快,根系对C的消耗也越多。大量研究表明,细根的寿命与地上部分C向根系供应的多少有密切关系,同时也与细根直径大小、土壤中N和水分的有效性、土壤温度以及根际周围的土壤动物和微生物的活动有关。本文综述了国外近年来在该领域里的研究进展,特别是对控制细根寿命的机理和主要影响因子进行了评述,目的是引起国内研究者的关注,促进我国根系生态学的研究与发展。
MEI L, WANG Z Q, CHENG Y H, et al. A review:factors influencing fine root longevity in forest ecosystems[J]. Acta Phytoecol Sin, 2004, 28(5):704-710.
[20]
FINÉR L, OHASHI M, NOGUCHI K, et al. Factors causing variation in fine root biomass in forest ecosystems[J]. For Ecol Manage, 2011, 261(2):265-277.DOI: 10.1016/j.foreco.2010.10.016.
[21]
梅莉, 王政权, 程云环, 等. 水曲柳和落叶松细根分布与土壤有效氮的关系[J]. 华中农业大学学报, 2008, 27(1):117-121.
MEI L, WANG Z Q, CHENG Y H, et al. Relationships between fine roots distribution and soil nitrogen availability in manchurian ash and Korean larch plantation[J]. J Huazhong Agric Univ, 2008, 27(1):117-121.DOI: 10.3321/j.issn:1000-2421.2008.01.025.
[22]
邸楠, 席本野, PINTO J R, 等. 宽窄行栽植下三倍体毛白杨根系生物量分布及其对土壤养分因子的响应[J]. 植物生态学报, 2013, 37(10):961-971.
Abstract
三倍体毛白杨(triploid Populus tomentosa)是我国华北地区主要纸浆林品种, 在该地区多采用宽窄行模式栽植。为基于根系结构特征制定该模式下毛白杨人工林高效水肥管理策略和明确影响其根系空间分布的主要因子, 在5年生林分中于8株样树周围挖取2106个土柱, 研究该栽植模式下毛白杨根系生物量的空间分布特征, 并分析了细根垂直分布对土壤有机质、速效磷和碱解氮等的响应。结果表明, 一维垂向上, 宽行内细根根重密度(FRBD)在0-30 cm土层中随深度增加而递减, 但在30 cm以下土层呈均匀分布(p = 0.079); 窄行内FRBD呈“双峰”分布, 即在0-20 cm (22%)和70-110 cm (31%)土层均有较多细根分布; 10-150 cm各土层中, 窄行FRBD较宽行高17%-148%。宽、窄行内, 随深度增加, 粗根根重密度(CRBD)均呈先增后减变化, 而细根粗根比(F/C)无显著变化(p &gt; 0.05), 窄行平均F/C较宽行高60%。一维径向上, 宽、窄行内FRBD均呈近均匀分布, 而CRBD和F/C均随距离增加分别显著递减和增大。二维尺度上, FRBD在窄行内分布相对均匀, 但在宽行内主要集中在表土层且随距离增加细根浅层化程度增强; CRBD在树干两侧呈“不对称”分布; 垂向0-20 cm、径向160-300 cm范围是宽行内平均FRBD和F/C较高区域, 分别为宽行相应指标总平均的2.8和1.1倍。FRBD在0-30 cm土层中随土壤有机质、速效磷和碱解氮含量的增加而逐渐增大, 但在30 cm以下土层中无明显变化趋势。研究结果表明, 宽、窄行间毛白杨根系分布的差异性主要体现在细根一维垂直分布和细根、粗根二维分布上。土壤有机质、速效磷和碱解氮是0-30 cm土层中毛白杨细根垂直分布的重要影响因子, 但对下层土壤中根系分布无影响。对宽窄行栽植的毛白杨林分灌溉时, 灌溉水应供给到窄行区域; 施肥时, 缓释肥和速效肥应分别浅施在宽行中央附近和窄行内。
DI N, XI B Y, PINTO J R, et al. Root biomass distribution of triploid Populus tomentosa under wide-and narrow-row spacing planting schemes and its responses to soil nutrients[J]. Chin J Plant Ecol, 2013, 37(10):961-971.DOI: 10.3724/SP.J.1258.2013.00099.
[23]
闫小莉, 戴腾飞, 贾黎明, 等. ‘欧美108’杨细根形态及垂直分布对水氮耦合措施的响应[J]. 植物生态学报, 2015, 39(8):825-837.
YAN X L, DAI T F, JIA L M, et al. Responses of the fine root morphology and vertical distribution of Populus × euramericana cv. Guariento to the coupled effect of water and nitrogen[J]. Chin J Plant Ecol, 2015, 39(8):825-837.DOI: 10.17521/cjpe.2015.0079.
[24]
丁国泉, 于立忠, 王政权, 等. 施肥对日本落叶松细根形态的影响[J]. 东北林业大学学报, 2010, 38(5):16-19.
DING G Q, YU L Z, WANG Z Q, et al. Effects of fertilization on fine root morphology of Larix kaempferi[J]. J Northeast For Univ, 2010, 38(5):16-19.DOI: 10.3969/j.issn.1000-5382.2010.05.004.
[25]
周玮, 周运超, 叶立鹏. 中龄林马尾松细根固土作用的调控[J]. 中南林业科技大学学报, 2015, 35(1):18-23.
ZHOU W, ZHOU Y C, YE L P. Regulation of fertilization treatment on fine root fixation in middle aged Pinus massoniana plantation[J]. J Central South Univ For Technol, 2015, 35(1):18-23.DOI: 10.14067/j.cnki.1673-923x.2015.01.004.
[26]
陈新平, 张福锁 .通过 “3414”试验建立测土配方施肥技术指标体系[J]. 中国农技推广, 2006, 22(4):36-39.
CHEN X P, ZHANG F S. Establishment of technical index system of soil testing and formula fertilization through “3414” test[J]. China Agric Technol Ext, 2006, 22(4):36-39.DOI: 10.3969/j.issn.1002-381X.2006.04.026.
[27]
刘运科, 范川, 李贤伟, 等. 间伐对川西亚高山粗枝云杉人工林细根生物量及碳储量的影响[J]. 植物生态学报, 2012, 36(7):645-654.
LIU Y K, FAN C, LI X W, et al. Effects of thinning on fine root biomass and carbon storage of subalpine Picea asperata plantation in western Sichuan Province,China[J]. Chin J Plant Ecol, 2012, 36(7):645-654.DOI: 10.3724/SP.J.1258.2012.00645.
[28]
BLOCK R M A, VANS REES K C J, KNIGHT J D. A review of fine root dynamics in Populus plantations[J]. Agrofor Syst, 2006, 67(1):73-84.DOI: 10.1007/s10457-005-2002-7.
[29]
程瑞梅, 王瑞丽, 肖文发, 等. 三峡库区马尾松根系生物量的空间分布[J]. 生态学报, 2012, 32(3):823-832.
CHENG R M, WANG R L, XIAO W F, et al. Spatial distribution of root biomass of Pinus massoniana plantation in Three Gorges Reservoir area,China[J]. Acta Ecol Sin, 2012, 32(3):823-832.DOI: 10.5846/stxb201104280561.
[30]
DOUGLAS G B, MCIVOR I R, POTTER J F, et al. Root distribution of poplar at varying densities on pastoral hill country[J]. Plant Soil, 2010, 333(1/2):147-161.DOI: 10.1007/s11104-010-0331-4.
[31]
ROTHSTEIN D E, ZAK D R, PREGITZER K S, et al. Kinetics of nitrogen uptake by Populus tremuloides in relation to atmospheric CO2 and soil nitrogen availability[J]. Tree Physiol, 2000, 20(4):265-270.DOI: 10.1093/treephys/20.4.265.
[32]
曲秋玲, 王国梁, 刘国彬, 等. 施氮对白羊草细根形态和生长的影响[J]. 水土保持通报, 2012, 32(2):74-79.
QU Q L, WANG G L, LIU G B, et al. Effect of N addition on root morphological characteristics and growth of Bothriochloa ischaemun[J]. Bull Soil Water Conserv, 2012, 32(2):74-79.DOI: 10.13961/j.cnki.stbctb.2012.02.054.
[33]
王保莉, 岑剑, 武传东, 等. 过量施肥下氮素形态对旱地土壤细菌多样性的影响[J]. 农业环境科学学报, 2011, 30(7):1351-1356.
WANG B L, CEN J, WU C D, et al. Effects of nitrogen form on bacterium diversity in excessive fertilization dryland soil[J]. J Agro-Environ Sci, 2011, 30(7):1351-1356.
[34]
郭衍银, 王秀峰, 朱艳红, 等. 生姜癞皮病的发生危害及病原初步鉴定[J]. 植物保护, 2004, 30(1):61-62.
GUO Y Y, WANG X F, ZHU Y H, et al. Occurrence dynamics of ginger bark cracking disease infected by root-knot nematode and its identification of primary pathogen[J]. Plant Prot, 2004, 30(1):61-62.DOI: 10.3969/j.issn.0529-1542.2004.01.018.
[35]
张永春. 长期不同施肥对土壤酸化作用的影响研究[D]. 南京:南京农业大学, 2012.
ZHANG Y C. Research of long term fertilization on soil acidification[D]. Nanjing:Nanjing Agricultural University, 2012.
[36]
DUMROESE R K, SUNG S J S, PINTO J R, et al. Morphology,gas exchange,and chlorophyll content of longleaf pine seedlings in response to rooting volume,copper root pruning,and nitrogen supply in a container nursery[J]. New For, 2013, 44(6):881-897.DOI: 10.1007/s11056-013-9377-5.
[37]
JIA S X, WANG Z Q, LI X P, et al. N fertilization affects on soil respiration,microbial biomass and root respiration in Larix gmelinii and Fraxinus mandshurica plantations in China[J]. Plant Soil, 2010, 333(1/2):325-336.DOI: 10.1007/s11104-010-0348-8.
[38]
RYTTER R M. The effect of limited availability of N or water on C allocation to fine roots and annual fine root turnover in Alnus incana and Salix viminalis[J]. Tree physiol, 33(9), 924-939.DOI: 10.1093/treephys/tpt060.
[39]
于立忠, 丁国泉, 史建伟, 等. 施肥对日本落叶松人工林细根直径、根长和比根长的影响[J]. 应用生态学报, 2007, 18(5):959-964.
YU L Z, DING G Q, SHI J W, et al. Effects of fertilization on fine root diameter,root length and specific root length in Larix kaempferi plantation[J]. Chin J Appl Ecol, 2007, 18(5):959-964.DOI: 10.13287/j.1001-9332.2007.0160.
[40]
闫小莉, 戴腾飞, 邢长山, 等. 水肥耦合对‘欧美108’杨幼林表土层细根形态及分布的影响[J]. 生态学报, 2015, 35(11):3692-3701.
YAN X L, DAI T F, XING C S, et al. Coupling effect of water and nitrogen on the morphology and distribution of fine root in surface soil layer of young Populus × euramericana cv. ‘Guariento’ plantation[J]. Acta Ecol Sin, 2015, 35(11):3692-3701.DOI: 10.5846/stxb201308032013.
[41]
MEINEN C, HERTEL D, LEUSCHNER C. Biomass and morphology of fine roots in temperate broad-leaved forests differing in tree species diversity:is there evidence of below-ground over-yielding?[J]. Oecologia, 2009, 161(1):99-111.DOI: 10.1007/s00442-009-1352-7.
[42]
HENRY A, KLEINMAN P J A, LYNCH J P. Phosphorus runoff from a phosphorus deficient soil under common bean (Phaseolus vulgaris L.) and soybean (Glycine max L.) genotypes with contrasting root architecture[J]. Plant Soil, 2009, 317(1/2):1-16.DOI: 10.1007/s11104-008-9784-0.
[43]
DREW M C. Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley[J]. New Phytol, 1975, 75(3):479-490.DOI: 10.1111/j.1469-8137.1975.tb01409.x.
[44]
秦洪波, 郭伦发, 王新桂, 等. 氮、磷、钾不同配方施肥组合对油梨苗木生长的影响[J]. 热带农业科学, 2016, 36(5):28-32.
QIN H B, GUO L F, WANG X G, et al. Effect of the N,P,K different fertilization combination on growth of avocado seedlings[J]. Chin J Trop Agric, 2016, 36(5):28-32.DOI: 10.12008/j.issn.1009-2196.2016.05.006.
[45]
王鹏, 牟溥, 李云斌. 植物根系养分捕获塑性与根竞争[J]. 植物生态学报, 2012, 36(11):1184-1196.
Abstract
为了更有效地从土壤中获取养分, 植物根系在长期的进化与适应中产生了一系列塑性反应, 以响应自然界中广泛存在的时空异质性。同时, 植物根系的养分吸收也要面对来自种内和种间的竞争。多种因素都会影响植物根竞争的结果, 包括养分条件、养分异质性的程度、根系塑性的表达等。竞争会改变植物根系的塑性反应, 比如影响植物根系的空间分布; 植物根系塑性程度差异也会影响竞争。已有研究发现根系具有高形态塑性和高生理塑性的植物在长期竞争过程中会占据优势。由于不同物种根系塑性的差异, 固定的对待竞争的反应模式在植物根系中可能并不存在, 其响应随竞争物种以及土壤环境因素的变化而变化。此外, 随着时间变化, 根系塑性的反应及其重要性也会随之改变。植物对竞争的反应可能与竞争个体之间的亲缘关系有关, 有研究表明亲缘关系近的植物可能倾向于减小彼此之间的竞争。根竞争对植物的生存非常重要, 但目前还没有研究综合考虑植物的各种塑性在根竞争中的作用。另外根竞争对群落结构的影响尚待深入的研究。
WANG P, MOU P, LI Y B. Review of root nutrient foraging plasticity and root competition of plants[J]. Chin J Plant Ecol, 2012, 36(11):1184-1196.DOI: 10.3724/SP.J.1258.2012.01184.
[46]
刘士玲, 陈琳, 杨保国, 等. 氮磷肥对西南桦无性系生物量分配和根系形态的影响[J]. 南京林业大学学报, 2019, 43(5):23-29.
LIU S L, CHEN L, YANG B G, et al. Effects of nitrogen and phosphorus fertilization on biomass allocation and root morphology in Betula alnoides clones[J]. J Nanjing For Univ, 2019, 43(5):23-29.DOI: 10.3969/j.issn.1000-2006.201809018
[47]
韦如萍, 胡德活, 陈金慧, 等. 低磷胁迫下杉木无性系根系形态及养分利用响应研究[J]. 南京林业大学学报(自然科学版), 2018, 42(2):1-8.
WEI R P, HU D H, CHEN J H, et al. Response of roots morphological characteristics and nutrient utilization to low phosphorus stress among five clones of Cunninghamia lanceolate Lamb. 3 Hook[J]. J Nanjing For Univ(Nat Sci Ed), 2018, 42(2):1-8.DOI: 10.3969/j.issn.1000-2006.201704027.
[48]
金国庆, 余启国, 焦月玲, 等. 配比施肥对南方红豆杉幼林生长的影响[J]. 林业科学研究, 2007, 20(2):251-256.
JIN G Q, YU Q G, JIAO Y L, et al. Effects of combined fertilization on young growth of Taxus chinensis var.mairei[J]. For Res, 2007, 20(2):251-256.DOI: 10.13275/j.cnki.lykxyj.2007.02.019.
[49]
EISSENSTAT D M. Trade-offs in root form and function[M]// Ecology in Agriculture. California:Elsevier, 1997:173-199.DOI: 10.1016/b978-012378260-1/50007-5.
[50]
宋平, 张蕊, 张一, 等. 模拟氮沉降对低磷胁迫下马尾松无性系细根形态和氮磷效率的影响[J]. 植物生态学报, 2016, 40(11):1136-1144.
Abstract
根系是植物吸收土壤营养的关键部位, 不同径级根系的形态和功能差异不仅与植株自身的遗传因素有关, 而且受到土壤中营养元素分布和水平的影响。在我国亚热带高氮沉降和酸性红壤磷匮乏及不均一的土壤环境下, 研究林木不同径级根系对外界营养环境变化的响应有利于深入了解林木根系的觅养机制及规律。该文以马尾松(Pinus massoniana)无性系19-5 (高磷效率)和21-3 (低磷效率)为材料, 在同质低磷和异质低磷两种盆栽处理下, 设置3个氮水平(对照、中氮和高氮)的模拟氮沉降实验。结果表明: 1)马尾松无性系苗木的生长受磷环境、氮水平和无性系三因素共同影响, 模拟氮沉降显著促进了异质低磷下马尾松苗高和整株干物质量的增加, 而在同质低磷下氮效应不显著; 在异质低磷、高氮下, 无性系19-5的苗高和整株干物质量分别是无性系21-3的1.1倍和1.6倍。2)马尾松各径级细根长度和表面积随径级增大而减小, 模拟氮沉降促进了直径&#x02264;1.5 mm的细根的增生发育, 直径1.5-2.0 mm的细根和&#x0003E;2.0 mm的较粗根无明显变化; 另外, 直径&#x02264;1.5 mm的细根长度占总根长的比例保持在90.4%-92.8%范围内, 受氮影响较小。3)模拟氮沉降显著提高了异质低磷下无性系19-5&#x02264;1.5 mm的细根长度和表面积, 同时, 其根系氮、磷吸收效率较对照分别高出93.3%和148.4%; 无性系21-3的根系氮、磷吸收效率受氮影响较小; 根系氮、磷利用效率均无显著变化。上述结果表明, &#x02264;1.5 mm的细根的增生发育和氮、磷吸收效率的提高可能是磷高效马尾松无性系应对高氮低磷环境的重要响应机制。
SONG P, ZHANG R, ZHANG Y, et al. Effects of simulated nitrogen deposition on fine root morphology,nitrogen and phosphorus efficiency of Pinus massoniana clone under phosphorus deficiency[J]. Chin J Plant Ecol, 2016, 40(11):1136-1144.DOI: 10.17521/cjpe.2016.0109.
[51]
孙义祥, 郭跃升, 于舜章, 等 .应用 “3414” 试验建立冬小麦测土配方施肥指标体系[J]. 植物营养与肥料学报, 2009, 15(1):197-203.DOI: 10.3321/j.issn:1008-505X.2009.01.029.
SUN Y X, GUO Y S, YU S Z, et al. Establishing phosphorus and potassium fertilization recommendation index based on the “3414” field experiments[J]. Plant Nutr Fertil Sci, 2009, 15(1):197-203.DOI: 10.3321/j.issn:1008-505X.2009.01.029.
[52]
叶立鹏, 周运超, 周玮, 等. 马尾松人工中龄林细根生长对施肥的响应[J]. 中南林业科技大学学报, 2013, 33(2):50-55.
YE L P, ZHOU Y C, ZHOU W, et al. Response of fine root growth of Pinus massoniana middle-aged forest to fertilization[J]. J Central South Univ For Technol, 2013, 33(2):50-55.DOI: 10.14067/j.cnki.1673-923x.2013.02.018.

RIGHTS & PERMISSIONS

Copyright reserved © 2021
PDF(1761 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/