Effects of different forest management modes on soil nitrogen content and enzyme activity

HUI Hao, GUAN Qingwei, WANG Yaru, LIN Xinyu, CHEN Bin, WANG Gang, HU Yue, HU Jingdong

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (4) : 151-158.

PDF(1686 KB)
PDF(1686 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (4) : 151-158. DOI: 10.12302/j.issn.1000-2006.201912044

Effects of different forest management modes on soil nitrogen content and enzyme activity

Author information +
History +

Abstract

【Objective】This study investigated the effects of three forest management modes on soil nitrogen content and related enzyme activities associated with the construction of shelterbelts surrounding the shore of Taihu Lake.【Method】Poplar plantations that have been standardized and aged, with three management modes, i.e., Populus euramericana cv. 35 (poplar) pure plantation (PPP), Populus euramericana cv. 35-Ligustrum lucidum(poplar-ligustrum) mixed plantation (LMP), and Populus euramericana cv. 35-Photinia serrulata (poplar-photinia) mixed plantation (PMP), were selected in Zhoutie Town of Yixing City in Jiangsu Province, China. Soil samples were collected from a one meter-deep soil profile to measure the soil nitrogen content, the activities of related enzymes in spring, and the relationship among them. The physical and chemical properties of the soil were also analyzed.【Result】① The levels of total nitrogen (TN) content were about 0.17-1.35 g/kg and were significantly (df=2, F=102.820, P<0.05) affected by the applied forest management modes. Compared with the content of TN in PPP, those in LMP and PMP increased by 21.8% and 69.7%, respectively. Along the soil profiles, the TN content decreased with increasing soil depth in the two mixed plantations and was significantly different among layers (df=3, F=108.289, P<0.05). The levels of nitrate nitrogen (N O 3 - -N) and ammonium nitrogen (N H 4 + -N) contents were 5.67 to 9.79 mg/kg and 3.22 to 12.43 mg/kg, respectively. They were also significantly affected by management modes (df=2, F=18.764, P<0.05; df=2, F=9.655, P<0.05). The content of N O 3 - -N in LMP and PMP decreased by 11.8% and 27.3%, respectively, compared with that in PPP; while the content of N H 4 + -N was significantly increased in the layers of ≥20-40, ≥40-60, and ≥60-80 cm when compared with those in PPP (df=3, F=106.230, P<0.05; df=3, F=119.794, P<0.05). Along the soil profiles, N O 3 - -N and N H 4 + -N contents generally decreased with increasing soil depth in the three forest management modes. The level of microbial biomass nitrogen (MBN) was about 6.04-9.52 mg/kg and the mean value of MBN in the LMP was 7.5% higher than that in PPP. ② The activities of soil urease (UE), nitrate reductase (NR), and nitrite reductase (NiR) were 3.43-9.16, 0.16-1.04, and 0.15-0.25 mg/(g·d), respectively. Compared with PPP, the activity of the UE in LMP was significantly increased in all soil layers (df=2, F=19.600, P<0.05), while the activity of NR in topsoil was significantly decreased (df=3, F=43.637, P<0.05). In PMP, however, the activity of UE was significantly decreased (df=3, F=17.825, P<0.05), but the activity the of NR was increased in comparison to those in the PPP. Moreover, there was no significant difference in soil NiR activity among the three forest management modes.These results indicate that UE and NR are more sensitive to management modes and could serve as indicators of soil nitrogen dynamics. In addition, soil nitrogen content and enzyme activities were closely correlated with water content and pH value.【Conclusion】The LMP and PMP management modes can improve the soil available nutrients, efficiently absorbing and decreasing N O 3 - -N in the soil, when compared with the PPP. In this way, the risks of nitrate leaching into the deep soil layer and that of polluting shallow groundwater are reduced. At the same time, the change in microbial biomass nitrogen and enzyme activity in the soil accelerated the soil nitrogen transformation and nutrient cycling. This suggests that multi-layer mixed forest management modes should be introduced and applied in the process of constructing shelterbelt forests surrounding the shore the Taihu Lake.

Key words

poplar / management mode / soil / nitrogen content / enzymatic activity / shelterbelts / Yixing City,Jiangsu Province

Cite this article

Download Citations
HUI Hao , GUAN Qingwei , WANG Yaru , et al . Effects of different forest management modes on soil nitrogen content and enzyme activity[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(4): 151-158 https://doi.org/10.12302/j.issn.1000-2006.201912044

References

[1]
FANG X M, ZHANG X F, CHEN F S, et al. Phosphorus addition alters the response of soil organic carbon decomposition to nitrogen deposition in a subtropical forest[J]. Soil Biology and Biochemistry, 2019, 133:119-128. DOI: 10.1016/j.soilbio.2019.03.005.
[2]
LEENA F, TIMO D, SEID M D, et al. Conifer proportion explains fine root biomass more than tree species diversity and site factors in major European forest types[J]. Forest Ecology and Management, 2017, 406:330-350. DOI: 10.1016/j.foreco.2017.09.017.
[3]
TILMAN D, CASSMAN K G, MATSON P A, et al. Agricultural sustainability and intensive production practices[J]. Nature, 2002, 418(6898):671-677.DOI: 10.1038/nature01014.
[4]
ZHANG X, DAVIDSON E A, MAUZERALL D L, et al. Mana-ging nitrogen for sustainable development[J]. Nature, 2015, 528(7580):51-59. DOI: 10.1038/nature15743.
[5]
VALVERDE-BARRANTES O J, ROCHA O J. Logging impacts on forest structure and seedling dynamics in a Prioria copaifera (Fabaceae) dominated tropical rain forest (Talamanca, Costa Rica)[J]. Revista De Biologia Tropical, 2014, 62(1):347-357. DOI: 10.15517/rbt.v62i1.8504.
[6]
RUEL J C, FORTIN D, POTHER D. Partial cutting in old-growth boreal stands: an integrated experiment[J]. The Forestry Chronicle, 2013, 89(3):360-369. DOI: 10.5558/tfc2013-066.
[7]
周焘, 王传宽, 周正虎, 等. 抚育间伐对长白落叶松人工林土壤碳、氮及其组分的影响[J]. 应用生态学报, 2019, 30(5):1651-1658.
ZHOU T, WANG C K, ZHOU Z H, et al. Effects of thinning on soil carbon and nitrogen fractions in a Larix olgensis plantation[J]. Chin J Appl Ecol, 2019, 30(5):1651-1658.DOI: 10.13287/j.1001-9332.201905.020.
[8]
WANG Q K, WANG S L. Soil microbial properties and nutrients in pure and mixed Chinese fir plantations[J]. Journal of Forestry Research, 2008, 19(2):131-135.DOI: 10.1007/s11676-008-0022-7.
[9]
CHEN X L, WANG D, CHEN X, et al. Soil microbial functional diversity and biomass as affected by different thinning intensities in a Chinese fir plantation[J]. Appl Soil Ecol, 2015, 92:35-44.DOI: 10.1016/j.apsoil.2015.01.018.
[10]
BOLAT I. The effect of thinning on microbial biomass C,N and basal respiration in black pine forest soils in Mudurnu,Turkey[J]. European Journal of Forest Research, 2014, 133(1):131-139.DOI: 10.1007/s10342-013-0752-8.
[11]
BAI S H, DEMPSEY R, REVERCHON F, et al. Effects of forest thinning on soil-plant carbon and nitrogen dynamics[J]. Plant and Soil, 2017, 411(1/2):437-449. DOI: 10.1007/s11104-016-3052-5.
[12]
吴殿鸣, 薛建辉, 罗英, 等. 杨麦间作系统硝态氮损失的原位研究[J]. 南京林业大学学报(自然科学版), 2012, 36(2):111-116.
WU D M, XUE J H, LUO Y, et al. Study on nitrate nitrogen leaching in poplar-wheat intercropping ecosystem by in situ analysis[J]. J Nanjing For Univ (Nat Sci Ed), 2012, 36(2):111-116. DOI: 10.3969/j.issn.1000-2006.2012.02.023.
[13]
武志杰, 隽英华, 陈利军, 等. 一种检测土壤硝酸还原酶活性的分析方法:CN101271060A[P]. 2008-09-24.
WU Z J, JIU Y H, CHEN L J, et al. A modified method for measuring soil nitrate reductase activity: CN101271060A[P]. 2008-09-24.
[14]
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
LU R K. Soil argrochemistry analysis protocols[M]. Beijing: China Agriculture Science Press. 2000.
[15]
杨万勤, 王开运. 森林土壤酶的研究进展[J]. 林业科学, 2004, 40(2):152-159.
YANG W Q, WANG K Y. Advances in Forest Soil Enzymology[J]. Sci Silvae Sin, 2004, 40(2):152-159. DOI: 10.11707/j.1001-7488.2004.02.027.
[16]
鲍勇, 高颖, 曾晓敏, 等. 中亚热带3种典型森林土壤碳氮含量和酶活性的关系[J]. 植物生态学报, 2018, 42(4)508-516.
Abstract
森林类型更替是影响生态系统有机质循环的重要因素, 它对森林生态系统的生产力、碳吸存和养分保持功能有影响。然而关于中亚热带不同森林类型对土壤碳氮含量和酶活性的影响及土壤碳氮含量和酶活性之间的关系鲜有报道。该文研究了福建省三明市3种典型亚热带森林——米槠(Castanopsis carlesii)天然次生林(SF)、米槠人工促进天然更新林(AR)、马尾松(Pinus massoniana)人工林(PM)的淋溶层(A层)土壤碳氮含量和土壤微生物酶活性的关系。结果表明: 在3种森林类型表层土壤中, 可溶性有机质中可溶性有机碳、可溶性有机氮(DON)、荧光发射光谱腐殖化指数的趋势均为SF > AR > PM, 芳香化指数大小为PM > AR > SF; SF和AR的NH<sub>4</sub> <sup>+</sup>-N显著高于PM, NO<sub>3</sub> <sup>-</sup>-N在3种林分中的含量低且差异不明显, 造成这种差异的原因是树种差异和人为干扰程度不同。PM的β-葡萄糖苷酶活性显著低于SF和AR; 纤维素水解酶活性大小为AR > SF > PM; PM多酚氧化酶显著高于SF和AR, 3种林分过氧化物酶无显著差异。AR的β-N-乙酰氨基葡萄糖苷酶(NAG)显著高于其他两种林分。冗余分析显示土壤总氮和DON是驱动淋溶层土壤酶活性的主要环境因子。总之, 土壤总氮含量与NAG活性呈正相关关系, 并且可溶性有机氮可能是氮循环中的重要一环; 土壤微生物优先利用易分解碳; 且碳氮养分循环之间存在一定的耦合关系。氮提高了与土壤碳相关的水解酶活性, 从而可促进碳周转。
BAO Y, GAO Y, ZENG X M, et al. Relationships between carbon and nitrogen contents and enzyme activities in soil of three typical subtropical forests in China[J]. Chin J of Plant Ecol, 2018, 42(4):508-516. DOI: 10.17521/cjpe.2017.0311.
[17]
王娟娟, 朱莎, 靳士科, 等. 上海市3种森林类型土壤微生物生物量碳和氮的时空格局[J]. 生态与农村环境学报, 2016, 32(4):615-621.
WANG J J, ZHU S, JIN S K, et al. Spatio-temporal distribution of soil microbial biomass carbon and nitrogen in three types of urban forest soils in Shanghai[J]. J of Ecol and Rural Environ, 2016, 32(4):615-621. DOI: 10.11934/j.issn.1673-4831.2016.04.016.
[18]
李瑞霞. 间伐对马尾松细根生物量、形态和碳氮含量的影响[D]. 南京: 南京林业大学, 2014.
LI R X. Effects of thinning on biomass, morphology and carbon and nitrogen content of fine roots of Pinus massoniana[D]. Nanjing: Nanjing Forestry University, 2014.
[19]
张志铭, 赵河, 杨建涛, 等. 太行山南麓山区不同植被恢复类型土壤理化和细根结构特征[J]. 生态学报, 2018, 38(23):8363-8370.
ZHNAG Z M, ZHAO H, YANG J T, et al. Soil physicochemical properties and fine root characteristics of different restored vegetation types in southern Taihang Mountain[J]. Acta Ecol Sin, 2018, 38(23):8363-8370.DOI: 10.5846 /stxb201801190150.
[20]
ZHU F F, DAI L M, ERIK A, et al. Uptake patterns of glycine, ammonium, and nitrate differ among four common tree species of northeast China[J]. Frontiers in Plant Science, 2019, 10:799. DOI: 10.3389/fpls.2019.00799.
[21]
詹媛媛, 薛梓瑜, 任伟, 等. 干旱荒漠区不同灌木根际与非根际土壤氮素的含量特征[J]. 生态学报, 2009, 29(1):59-66.
ZHAN Y Y, XUE Z Y, REN W, et al. Characteristics of nitrogen content between rhizopshere and bulk soil under seven shrubs in arid desert area of China[J]. Acta Ecol Sin, 2009, 29(1):59-66. DOI: 10.3321 /j.issn:1000-0933.2009.01.008.
[22]
冯烨, 张焕朝, 杨瑞珍, 等. 杨桤混交林及其凋落物对土壤氮矿化的影响[J]. 南京林业大学学报(自然科学版), 2019, 43.
FENG H, ZHANG H C, YANG R Z, et al. The influence of poplar-alder mixed forest and litter to soil nitrogen mineralization[J]. J Nanjing For Univ(Nat Sci Ed), 2019, 43. DOI: 10.3969/j.issn.1000-2006.201902025.
[23]
叶钰倩, 赵家豪, 刘畅, 等. 间伐对马尾松人工林根际土壤氮含量及酶活性的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(3):193-198.
YE Y Q, ZHAO J H, LIU C, et al. Effects of thinning on nitrogen contents and enzyme activities of rhizosphere soil in Pinus massoniana plantations[J]. J Nanjing For Univ(Nat Sci Ed), 2018, 42(3):193-198. DOI: 10.3969/j.issn.1000-2006.201709026.
[24]
王卫国, 童根平, 徐温新, 等. 3种常见速生灌木吸收红壤氮磷能力的比较[J]. 浙江林学院学报, 2009, 26(3):346-350.
WANG W G, TONG G P, XU W X, et al. Absorption of soil N and P by three fast growing bush species[J]. J Zhejiang For Coll, 2009, 26(3):346-350. DOI: 10.3969/j.issn.2095-0756.2009.03.009.
[25]
芦建国, 梁同江, 孔凡海. 8种灌木根系分布对高速公路生态边坡的影响[J]. 南京林业大学学报(自然科学版), 2011, 35(5):155-159.
LU J G, LIANG T J, KONG F H. Influence of eight species shrubs’ roots distribution on the ecological slope of highway[J]. J Nanjing For Univ(Nat Sci Ed), 2011, 35(5):155-159.DOI: 10.3969/j.issn.1000-2006.2011.05.035.
[26]
薛建辉, 阮宏华, 刘金根, 等. 太湖流域水岸生态防护林体系建设技术与对策[J]. 南京林业大学学报(自然科学版), 2008, 32(5):13-18.
XUE J H, RUAN H H, LIU J G, et al. The construction techniques and strategies of riparian shelterbelt systems surrounding Taihu Lake watershed[J]. J Nanjing For Univ(Nat Sci Ed), 2008, 32(5):13-18. DOI: 10.3969/j.issn.1000-2006.2008.05.004.
[27]
周石磊, 孙悦, 黄廷林, 等. 周村水库大气湿沉降氮磷及溶解性有机物特征[J]. 水资源保护, 2020, 36(3):52-59.
ZHOU S L, SUN Y, HUANG T L, et al. Characteristics of nitrogen, phosphorus and dissolved organic matter in atmospheric wet deposition of Zhoucun Reservoir[J]. Water Resour Prot, 2020, 36(3):52-59. DOI: 10.3880/j.issn.1004-6933.2020.03.010.
[28]
朱兆良, 文启孝. 中国土壤氮素[M]. 南京: 江苏科学技术出版社, 1992.
ZHU Z L, WEN Q X. Nitrogen in soil of China[M]. Nanjing: Jiangsu Science and Technology Press, 1992.
[29]
XU X, THORNTON P E, POST W M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems[J]. Global Ecology and Biogeography, 2013, 22(6):737-749. DOI: 10.1111/geb.12029.
[30]
董敏慧, 张良成, 文丽, 等. 松树-樟树混交林、纯林土壤微生物量碳、氮及多样性特征研究[J]. 中南林业科技大学学报, 2017, 37(11):146-153.
DONG H M, ZHANG L C, WEN L, et al. Soil microbial biomass C, N and diversity characteristics in pure and mixed forest of Pinus and Cinnamomun[J]. J Central South Univ For Technol, 2017, 37(11):146-153. DOI: 10.14067/j.cnki.1673-923x.2017.11.024.
[31]
田大伦, 项文化, 闫文德. 马尾松与湿地松人工林生物量动态及养分循环特征[J]. 生态学报, 2004, 24(10):2207-2210.
TIAN D L, XIANG W H, YAN W D, et al. Biomass dynamics and nutrient cycling characteristics of Pinus massoniana and Pinus elliottii plantations[J]. Acta Ecol Sin, 2004, 24(10):2207-2210. DOI: 10.3321/j.issn:1000-0933.2004.10.017.
[32]
胡亚林, 汪思龙, 颜绍馗, 等. 杉木人工林取代天然次生阔叶林对土壤生物活性的影响[J]. 应用生态学报, 2005, 16(8):1411-1416.
HU Y L, WANG S L, YAN S K, et al. Effect of Chinese fir plantation replacing natural secondary broad-leaved forest on soil biological activity[J]. Chin J Appl Ecol, 2005, 16(8):1411-1416. DOI: 10.13287/j.1001-9332.2005.0167.
[33]
孙瑞莲, 赵秉强, 朱鲁生, 等. 长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用[J]. 植物营养与肥料学报, 2003, 9(4):406-410.
SUN R L, ZHAO B Q, ZHU L S, et al. Effects of long-term fertilization on soil enzyme activity and its regulation of soil fertility[J]. Plant Nutr Fertil Sci, 2003, 9(4):406-410. DOI: 10.3321/j.issn:1008-505X.2003.04.005.
[34]
刘捷豹, 陈光水, 郭剑芬, 等. 森林土壤酶对环境变化的响应研究进展[J]. 生态学报, 2017, 37(1):110-117.
LIU J B, CHEN G S, GUO J F, et al. Advances in research on the responses of forest soil enzymes to environmental change[J]. Acta Ecol Sin, 2017, 37(1):110-117. DOI: 10.5846/stxb201608011581.
[35]
彭春菊, 李全, 顾鸿昊, 等. 模拟氮沉降及经营方式对毛竹林土壤酶活性的影响[J]. 应用生态学报, 2017, 28(2):423-429.
PENG C J, LI Q, GU H H, et al. Effects of simulated nitrogen deposition and management type on soil enzyme activities in Moso bamboo forest[J]. Chin J Appl Ecol, 2017, 28(2):423-429.DOI: 10.13287/j.1001-9332.201702.001.
[36]
万欣, 李文斌, 黄海涛, 等. 扬州茱萸湾风景区森林土壤质量状况[J]. 江苏林业科技, 2020, 47(2):40-43,47.
WAN X, LI W B, HUANG H T, et al. Soil quality of urban forest in different vegetationtypes in Zhuyuwan Scenic Spot, Yangzhou[J]. Journal of Jiangsu Forestry Science & Technology, 2020, 47(2):40-43,47. DOI: 10.3969/j.issn.1001-7380.2020.02.008.
[37]
杨万勤, 宋光煜, 韩玉萍. 土壤生态学的理论体系及其研究领域[J]. 生态学杂志, 2000, 19(4):53-56.
YANG W Q, SONG G Y, HAN Y P. Theoretical system and research fields of soil ecology[J]. Chin J Ecol, 2000, 19(4):53-56. DOI: 10.13292/j.1000-4890.2000.0058.
[38]
周礼恺. 土壤的酶活性[J]. 土壤学进展, 1980, (4):9-15.
ZHOU L K. Enzyme activity of soil[J]. Progress in Soil Science, 1980, (4):9-15.
[39]
TABATABAI M A, DICK W A. Distribution and stability of pyrophosphatase in soils[J]. Soil Biol and Biochem, 1979, 11(6):655-659. DOI: 10.1016/0038-0717(79)90035-x.
[40]
VERES Z, KOTROCZÓ Z, FEKETE I, et al. Soil extracellular enzyme activities are sensitive indicators of detrital inputs and carbon availability[J]. Appl Soil Ecol, 2015, 92:18-23. DOI: 10.1016/j.apsoil.2015.03.006.
[41]
孟立君, 吴凤芝. 土壤酶研究进展[J]. 东北农业大学学报, 2004, 35(5):622-626.
MENG L J, WU F Z, et al. Research progress of soil enzymes[J]. J Northeast Agric Univ, 2004, 35(5):622-626. DOI: 10.3969/j.issn.1005-9369.2004.05.024.

RIGHTS & PERMISSIONS

Copyright reserved © 2021
PDF(1686 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/