Risk assessments of forestry carbon sequestration projects based on Bayesian network

GAO Qinyi, PAN Chunxia, LIU Qiang, GU Guangtong, ZHU Yalu, WU Weiguang

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (4) : 210-218.

PDF(2001 KB)
PDF(2001 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (4) : 210-218. DOI: 10.12302/j.issn.1000-2006.201912050

Risk assessments of forestry carbon sequestration projects based on Bayesian network

Author information +
History +

Abstract

【Objective】Developing forestry carbon sequestration is an important way to address climate change. With the gradual establishment and improvement of China’s carbon markets, forestry carbon sequestration projects have received widespread attention and have good development prospects, but they also face many uncertainties and risks. This study conducted a systematic risk assessment for forestry carbon sequestration projects under the Bayesian network principle and provided a scientific reference for risk management for other projects.【Method】Taking CCER (China certified emission reduction) forestry carbon sequestration projects as the research object, and using expert knowledge form multi-domain forestry carbon sequestration, this study constructed a risk assessment model for forestry carbon sequestration projects based on the Bayesian network by determining the network structure and calculating risk parameters. We combined the information of expert interviews and investigations to determine the risk list, and then determined the Bayesian network structure associated with the risk. We used the entropy weight method to calculate risk factor weight according to the expert’s scoring of the occurrence probability and the impact of various risk factors, so as to obtain the assessment result of each expert on the risk source and the total risk. Finally, all the parameters of the Bayesian network operation were obtained. Using the constructed risk assessment model, we measured the overall risk level of CCER forestry carbon sequestration projects and determined the main risk factors for various risks. Considering the differences in the characteristics of different types of CCER forestry carbon sequestration projects, the risk assessment model was adaptively adjusted by including project-type nodes. This was done to calculate the risk values of four types of CCER forestry carbon sequestration projects through the node probability simulation function of the Bayesian network and to compare the risk diffe-rences of different types of these four projects.【Result】①The overall risk value of CCER forestry carbon sequestration projects was 1.932. Further, the risk levels of the four types from high to low were policy risk, market risk, technical risk, and natural risk, with the corresponding risk values being 2.150, 2.022, 1.925 and 1.546, respectively. ②For CCER forestry carbon sequestration projects, the main risk factors of policy risk were changes in forestry carbon sequestration trading rules and changes in national emission reduction policies. Meanwhile, the main risk factors of market risk included rising labor prices and rising costs of rented land. The main risk factors of technical risk were the projects failing to be issued and the projects failing to be filed; whereas, the main risk factors of natural risk included diseases, pests, and forest fires. ③The risk levels of different types of CCER forestry carbon sequestration projects from high to low were carbon sequestration afforestation project, bamboo afforestation project, forest management project and bamboo forest management project, with risk values of 2.221, 2.121, 1.954 and 1.705, respectively.【Conclusion】The Bayesian network can comprehensively consider both risk level and risk impact information, and had certain advantages in the project risk assessment. The risk level of CCER forestry carbon sequestration projects was medium, and the policy risks and market risks were relatively high under the current conditions. When making investment decisions for forestry carbon sequestration projects, enterprise entities should pay close attention to changes in carbon sequestration market policies and scientifically to evaluate project risks. Relevant departments should focus on reducing systemic risks caused by policy uncertainties, and improve the stability and activity of the carbon sequestration market, as well as simplify the development process of forestry carbon sequestration projects to reduce the transaction costs of the project development.

Key words

forestry carbon sequestration / risk assessment / Bayesian network / China certified emission reduction (CCER)

Cite this article

Download Citations
GAO Qinyi , PAN Chunxia , LIU Qiang , et al . Risk assessments of forestry carbon sequestration projects based on Bayesian network[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(4): 210-218 https://doi.org/10.12302/j.issn.1000-2006.201912050

References

[1]
DANG P T H, BROUWER R, DAVIDSON M. The economic costs of avoided deforestation in the developing world:a meta-analysis[J]. J For Econ, 2014, 20(1):1-16.DOI: 10.1016/j.jfe.2013.06.004.
[2]
王科, 陈沫. 中国碳交易市场回顾与展望[J]. 北京理工大学学报(社会科学版), 2018, 20(2):24-31.
WANG K, CHEN M. Review and prospect of China’s carbon trading system[J]. J Beijing Inst Technol(Soc Sci Ed), 2018, 20(2):24-31.DOI: 10.15918/j.jbitss1009-3370.2018.5237.
[3]
石柳, 唐玉华, 张捷. 我国林业碳汇市场供需研究:以广东长隆碳汇造林项目为例[J]. 中国环境管理, 2017, 9(1):104-110.
SHI L, TANG Y H, ZHANG J. Supply-demand analysis of the forest carbon sink market in China:illustrated by the Guangdong Chimelong Sink Afforestation Project[J]. Environ Conformity Assess, 2017, 9(1):104-110.DOI: 10.16868/j.cnki.1674-6252.2017.01.104.
[4]
陈娟丽. 我国林业碳汇存在的障碍及法律对策[J]. 西北农林科技大学学报(社会科学版), 2015, 15(5):154-160.
CHEN J L. Obstacles existing in China’s forestry carbon sequestration and legal countermeasures[J]. J Northwest A F Univ(Soc Sci Ed), 2015, 15(5):154-160.DOI: 10.13968/j.cnki.1009-9107.2015.05.024.
[5]
武曙红, 张小全. CDM林业碳汇项目的非持久性风险分析[J]. 林业科学, 2007, 43(8):123-126.
WU S H, ZHANG X Q. Analyses on non-permanence issues of CDM forestry project[J]. Sci Silvae Sin, 2007, 43(8):123-126.DOI: 10.3321/j.issn:1001-7488.2007.08.021.
[6]
马建平, 庄贵阳. CDM项目开发的风险因素识别与规避对策[J]. 华中科技大学学报(社会科学版), 2011, 25(2):87-92.
MA J P, ZHUANG G Y. Risk factor identification and avoidance measures in CDM project development[J]. J Huazhong Univ Sci Techno(Soc Sci Ed), 2011, 25(2):87-92.DOI: 10.19648/j.cnki.jhustss1980.2011.02.015.
[7]
PASGAARD M, SUN Z, MÜLLER D, et al. Challenges and opportunities for REDD+:a reality check from perspectives of effectiveness,efficiency and equity[J]. Environ Sci Policy, 2016, 63:161-169.DOI: 10.1016/j.envsci.2016.05.021.
[8]
金婷, 吴伟光, 刘强, 等. 林业CCER碳汇项目风险评估模型与应用:以安吉竹林经营碳汇项目为例[J]. 世界林业研究, 2018, 31(4):91-96.
JIN T, WU W G, LIU Q, et al. Risk assessment model of forestry-based CCER project and its application:a case study of Anji bamboo forest sink project[J]. World For Res, 2018, 31(4):91-96.DOI: 10.13348/j.cnki.sjlyyj.2018.0051.y.
[9]
王丹, 王宁. 基于模糊分析的CDM项目风险评估模拟研究[J]. 资源与产业, 2011, 13(4):50-54.
WANG D, WANG N. Simulation of CDM project risk assessment based on fuzzy analysis[J]. Resour Ind, 2011, 13(4):50-54.DOI: 10.3969/j.issn.1673-2464.2011.04.010.
[10]
陈卓旋, 周伟, 高岚. 基于层次分析法的碳汇林经营风险评价[J]. 林业与环境科学, 2018, 34(6):90-97.
CHEN Z X, ZHOU W, GAO L. The evaluation of carbon forest management risks based on analytic hierarchy process[J]. For Environ Sci, 2018, 34(6):90-97.DOI: 10.3969/j.issn.1006-4427.2018.06.015.
[11]
YET B, CONSTANTINOU A, FENTON N, et al. A Bayesian network framework for project cost,benefit and risk analysis with an agricultural development case study[J]. Expert Syst Appl, 2016, 60:141-155.DOI: 10.1016/j.eswa.2016.05.005.
[12]
沈屏, 周虹, 翟印礼. 林业碳汇贸易风险浅析[C]// 第二届中国林业学术大会—S10 林业与气候变化论文集.南宁, 2009:139-141.
SHEN P, ZHOU H, ZHAI Y L. Risk analysis of forestry carbon sequestration trade[C]// The 2nd China Forestry Academic Conference:S10 Collection of Papers on Forestry and Climate Change.Nanning, 2009:139-141.
[13]
张小有, 黄冰冰, 杨华领. 江西省CDM林业碳汇项目投资探析[J]. 林业经济, 2016, 38(12):46-49.
ZHANG X Y, HUANG B B, YANG H L. Investment analysis of CDM forestry carbon sink project in Jiangxi Province[J]. For Econ, 2016, 38(12):46-49.DOI: 10.13843/j.cnki.lyjj.2016.12.008.
[14]
张静娉, 高岚. 我国碳汇林经营风险的识别研究[J]. 中南林业科技大学学报(社会科学版), 2016, 10(2):14-18.
ZHANG J P, GAO L. Research on identification of the forest carbon sinks business risk in China[J]. J Central South Univ For Technol(Soc Sci), 2016, 10(2):14-18.DOI: 10.14067/j.cnki.1673-9272.2016.02.004.
[15]
张颖, 张莉莉, 金笙. 基于分类分析的中国碳交易价格变化分析:兼对林业碳汇造林的讨论[J]. 北京林业大学学报, 2019, 41(2):116-124.
ZHANG Y, ZHANG L L, JIN S. Carbon trading price changes in China’s carbon emission rights trading trials based on classification analysis:a discussion on forestry carbon sequestration afforestation[J]. J Beijing For Univ, 2019, 41(2):116-124.DOI: 10.13332/j.1000-1522.20180198.
[16]
张颖, 曹先磊. 中国自愿减排量的开发及其发展潜力的经济学研究[C]// 2016第五届国际清洁能源论坛论文集.澳门, 2016:259-279.
ZHANG Y, CAO X L. Economic research on development and potential of voluntary emission reduction in China[C]// Proceedings of the 5th International Clean Energy Forum 2016.Macau, 2016: 259-279.
[17]
陈晓红, 胡维, 王陟昀. 自愿减排碳交易市场价格影响因素实证研究:以美国芝加哥气候交易所(CCX)为例[J]. 中国管理科学, 2013, 21(4):74-81.
CHEN X H, HU W, WANG Z Y. Empirical research on price impact factors of carbon exchange of vo-luntary market:evidence from CCX of USA[J]. Chin J Manag Sci, 2013, 21(4):74-81.DOI: 10.16381/j.cnki.issn1003-207x.2013.04.009.
[18]
孙雨薇, 王灿. 碳市场政策下企业对碳信用的支付意愿及影响因素研究[J]. 中国人口·资源与环境, 2017, 27(3):11-21.
SUN Y W, WANG C. Estimate companies’ willingness to pay for carbon credit and the influencing factors[J]. China Popul Resour Environ, 2017, 27(3):11-21.DOI: 10.3969/j.issn.1002-2104.2017.03.002.
[19]
周彩贤, 张峰, 于海群, 等. 北京市林业碳汇交易项目开发实践[J]. 林业经济, 2015, 37(2):118-121.
ZHOU C X, ZHANG F, YU H Q, et al. Forestry carbon trading project development practice in Beijing[J]. For Econ, 2015, 37(2):118-121.DOI: 10.13843/j.cnki.lyjj.2015.02.022.
[20]
王丹舟, 杨德天. 中国碳排放权交易价格的驱动因素[J]. 首都经济贸易大学学报, 2018, 20(5):87-95.
WANG D Z, YANG D T. Driving factors of China’s carbon emission rights’ price:based on data of Guangzhou carbon emissions exchange[J]. J Cap Univ Econ Bus, 2018, 20(5):87-95.DOI: 10.13504/j.cnki.issn1008-2700.2018.05.010.
[21]
ALBEROLA E, CHEVALLIER J, CHÈZE B. Price drivers and structural breaks in European carbon prices 2005-2007[J]. Energy Policy, 2008, 36(2):787-797.DOI: 10.1016/j.enpol.2007.10.029.
[22]
黄宰胜, 陈钦. 基于造林成本法的林业碳汇成本收益影响因素分析[J]. 资源科学, 2016, 38(3):485-492.
HUANG Z S, CHEN Q. Influencing factors analysis of forestry carbon sequestration cost-benefit based on afforestation cost methods[J]. Resour Sci, 2016, 38(3):485-492.DOI: 10.18402/resci.2016.03.11.
[23]
何清华, 杨德磊, 罗岚, 等. 基于贝叶斯网络的大型复杂工程项目群进度风险分析[J]. 软科学, 2016, 30(4):120-126,139.
HE Q H, Yang D L, LUO L, et al. Research of large scale and complex construction programs’ schedule risk based on Bayesian Network[J]. Soft Sci, 2016, 30(4):120-126,139.DOI: 10.13956/j.ss.1001-8409.2016.04.26.
[24]
KUO C. Managing ship safety[M]. London: Lloyd’s of London Press, 1998.
[25]
LEE E, PARK Y, SHIN J G. Large engineering project risk ma-nagement using a Bayesian belief network[J]. Expert Syst Appl, 2009, 36(3):5880-5887.DOI: 10.1016/j.eswa.2008.07.057.
[26]
曹先磊, 程宝栋. 中国林业碳汇核证减排量项目市场发展的现状、问题与建议[J]. 环境保护, 2018, 46(15):27-34.
CAO X L, CHENG B D. Market development of forestry carbon sequestration project of China certified emission reduction:current situation,challenges and suggestions[J]. Environ Prot, 2018, 46(15):27-34.DOI: 10.14026/j.cnki.0253-9705.2018.15.006.

RIGHTS & PERMISSIONS

Copyright reserved © 2021
PDF(2001 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/