Effects of variable temperatures on seed germination and seedling growth of Phyllostachys edulis

WAN Yawen, FU Huajun, SHI Peijian, LIN Shuyan

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (4) : 97-106.

PDF(5074 KB)
PDF(5074 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (4) : 97-106. DOI: 10.12302/j.issn.1000-2006.202002004

Effects of variable temperatures on seed germination and seedling growth of Phyllostachys edulis

Author information +
History +

Abstract

【Objective】The germination characteristics of moso bamboo seeds and the development law of seedlings with the 1-5 leaves were comprehensively studied after being cultivated in varying temperatures. This provided a theoretical and practical basis for the study of bamboo seedlings.【Method】The seeds were collected from Dajing Town, Lingchuan County, Guilin City in Guangxi Province. The seedlings were cultured in a laboratory incubator and seven different temperature treatments (two different temperature combinations within 24 hours) were set: 29 ℃/15 ℃ (T1), 28 ℃/16 ℃ (T2), 27 ℃/17 ℃ (T3), 26 ℃/18 ℃ (T4), 25 ℃/19 ℃ (T5), 24 ℃/20 ℃ (T6), 23 ℃/21 ℃ (T7), and one constant temperature environment 22 ℃/22 ℃ (T8). The temperature change period was 12 / 12 h. Every 12 hours, the germination time of each seed, the leaf development time of 1-5 leaves, and the leaf height under each environment of a different temperature were observed and recorded in detail. The leaf area, fresh and dry weights of the aboveground and underground parts, root morphology, leaf surface micromorphology, stomatal length and stomatal density were also measured.【Result】 ① The germination rate of P. edulis seeds was more than 50% under different temperature conditions. Combined with the germination potential of seeds, it was found that the germination potential of T4-T7 treatments was higher than 30%. In T1-T8 treatments, the mean germination time of the seeds was gradually shor-tened. ② Under different temperature conditions, the leaf development time of seedlings gradually extended from the first leaf to the fifth leaf. The time and quantity of leaf development were relatively concentrated in the T6-T8 treatments; meanwhile, leaf height and area of seedlings in the same culture environment gradually increased from the first leaf to the fifth leaf. Notably, the higher the temperature difference was, so did the leaf height increase. The development rate of leaves after the third leaf tended to be stable and it was observed that the larger the temperature difference, the larger the biomass of seedlings. In general, the root system developed better in T3-T6 treatments. ③ With the decrease in tempe-rature differences, the number of mastoid and epidermal hairs on the abaxial epidermis of P. edulis leaves gradually increased. From the first to the fifth leaf in the same treatments, the number of mastoid and epidermal hairs on the abaxial epidermis also gradually increased. In T1-T8 treatments, the stomata on the abaxial epidermis were arranged in rows. Although there was no significant difference in the appearance of the stomata, the length and density of the stomata ge-nerally increased first and then decreased, and the highest stomatal density was mainly concentrated in T5. 【Conclusion】The variable temperature treatments at 26 ℃/18 ℃ (T4), 25 ℃/19 ℃ (T5), and 24 ℃/20 ℃ (T6) were more conducive to improving the germination rate and germination potential of P. edulis seeds. Furthermore, the overall growth and development of the seedlings, including leaf height, leaf area, growth rate, biomass, root system and stomatal densities, were more suitable under these three different temperatures.

Key words

Phyllostachys edulis / variable temperature / seed germination / seedling growth and development

Cite this article

Download Citations
WAN Yawen , FU Huajun , SHI Peijian , et al. Effects of variable temperatures on seed germination and seedling growth of Phyllostachys edulis[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(4): 97-106 https://doi.org/10.12302/j.issn.1000-2006.202002004

References

[1]
MILLER T. Effects of emergence time on survival and growth in an early old-field plant community[J]. Oecologia, 1987, 72(2):272-278.DOI: 10.1007/BF00379278.
[2]
潘健, 曾繁丽, 程家寿, 等. 温度和光照对解除休眠的永瓣藤种子萌发的影响[J]. 植物资源与环境学报, 2020, 29(4):78-80.
PAN J, ZENG F L, CHENG J S, et al. Effects of temperature and illumination on dormancy-broken seed germination of Monimopetalum chinense[J]. J Plant Resour Environ, 2020, 29(4):78-80. DOI: 10.3969/j.issn.1674-7895.2020.04.12.
[3]
王玉峰. 温度对植物种子萌发机制的影响[J]. 防护林科技, 2015(6):76-78.
WANG Y F. Effects of temperature on seed germination mechanism[J]. Prot For Sci Technol, 2015(6):76-78.DOI: 10.13601/j.issn.1005-5215.2015.06.029.
[4]
VORONTSOVA M S, CLARK L G, DRANSFIELD J, et al. World checklist of bamboos and rattans[M]. Beijing: Science Press, 2017.
[5]
陈双林, 杨清平, 郭子武. 主要环境因素对小佛肚竹出笋、成竹和畸形秆率的影响[J]. 四川农业大学学报, 2008, 26(1):117-120.
CHEN S L, YANG Q P, GUO Z W. Influence of principal environmental factors on shooting,growth and abnormal culm rate of Bambusa ventricosa[J]. J Sichuan Agric Univ, 2008, 26(1):117-120.DOI: 10.3969/j.issn.1000-2650.2008.01.025.
[6]
郭龙梅, 姜仟坤, 曹帮华, 等. 浸种温度与时间对毛竹种子发芽的影响研究[J]. 世界竹藤通讯, 2016, 14(2):19-22.
GUO L M, JIANG Q K, CAO B H, et al. Effects of soaking time and temperature on germination of moso bamboo seeds[J]. World Bamboo Rattan, 2016, 14(2):19-22.DOI: 10.13640/j.cnki.wbr.2016.02.005.
[7]
杨丽芝, 潘春霞, 邵珊璐, 等. 多效唑和干旱胁迫对毛竹实生苗活力、光合能力及非结构性碳水化合物的影响[J]. 生态学报, 2018, 38(6):2082-2091.
YANG L Z, PAN C X, SHAO S L, et al. Effects of PP333 and drought stress on the activity,photosynthetic characteristics,and non-structural carbohydrates of Phyllostachys edulis seedlings[J]. Acta Ecol Sin, 2018, 38(6):2082-2091.DOI: 10.5846/stxb201703080389.
[8]
叶松涛, 杜旭华, 宋帅杰, 等. 水杨酸对干旱胁迫下毛竹实生苗生理生化特征的影响[J]. 林业科学, 2015, 51(11):25-31.
YE S T, DU X H, SONG S J, et al. Effect of salicylic acid on physiological and biochemical characteristics of Phyllostachys edulis seedlings under drought stress[J]. Sci Silvae Sin, 2015, 51(11):25-31.DOI: 10.11707/j.1001-7488.20151104.
[9]
应叶青, 魏建芬, 解楠楠, 等. 自然低温胁迫对毛竹生理生化特性的影响[J]. 南京林业大学学报(自然科学版), 2011, 35(3):133-136.
YING Y Q, WEI J F, XIE N N, et al. Effects of natural low temperature stress on physiological and biochemical properties of Phyllostachys edulis[J]. J Nanjing For Univ (Nat Sci Ed), 2011, 35(3):133-136.DOI: 10.3969/j.issn.1000-2006.2011.03.028.
[10]
胡慧, 周明兵, 杨萍, 等. 毛竹微型颠倒重复序列转座子PhTourist1的克隆与分析[J]. 林业科学, 2015, 51(5):127-134.
HU H, ZHOU M B, YANG P, et al. Cloning and analysis of miniature inverted repeat transposable elements PhTourist1 from Phyllostachys edulis[J]. Sci Silvae Sin, 2015, 51(5):127-134.
[11]
王丽丽, 赵韩生, 孙化雨, 等. 胁迫条件下毛竹miR164b及其靶基因PeNAC1表达研究[J]. 林业科学研究, 2015, 28(5):605-611.
WANG L L, ZHAO H S, SUN H Y, et al. Expression analysis of miR164b and its target gene PeNAC1 in Phyllostachys edulis under stress[J]. For Res, 2015, 28(5):605-611.DOI: 10.13275/j.cnki.lykxyj.2015.05.002.
[12]
张秀芳, 石东里, 张兰. 观察植物气孔结构的简易方法[J]. 生物学通报, 2002, 37(6):42.
ZHANG X F, SHI D L, ZHANG L. A simple way to observe the stomatal structure of plants[J]. Bull Biol, 2002, 37(6):42.DOI: 10.3969/j.issn.0006-3193.2002.06.031.
[13]
王相琴. 协青早A含芽谷种发芽率试验[J]. 湖北农业科学, 1999, 38(6):13-22.
WANG X Q. Experiment on germination rate of seed containing bud in Xieqingzao A[J]. Hubei Agric Sci, 1999, 38(6):13-22.DOI: 10.3969/j.issn.0439-8114.1999.06.005.
[14]
宋兆伟, 郝丽珍, 黄振英, 等. 光照和温度对沙芥和斧翅沙芥植物种子萌发的影响[J]. 生态学报, 2010, 30(10):2562-2568.
SONG Z W, HAO L Z, HUANG Z Y, et al. Effects of light and temperature on the germination of Pugionium cornutum (L.) Gaertn.and Pugionium dolabratum Maxim.seeds[J]. Acta Ecol Sin, 2010, 30(10):2562-2568.
[15]
陆维超. 杨树茎尖小RNA组学和种子萌发技术研究[D]. 扬州:扬州大学, 2017.
LU W C. Small RNAs of shoot meristems in Populus tomentosa and its seed germination[D]. Yangzhou:Yangzhou University, 2017.
[16]
李伟成, 盛碧云, 王树东, 等. 毛竹种子萌发对温度和光照的响应[J]. 竹子研究汇刊, 2007, 26(4):26-29.
LI W C, SHENG B Y, WANG S D, et al. The response of moso bamboo seeds germination to temperature and light[J]. J Bamboo Res, 2007, 26(4):26-29.DOI: 10.3969/j.issn.1000-6567.2007.04.006.
[17]
付顺华, 吴家森, 余永清, 等. 雷竹种子特性及苗期生长观察[J]. 山东林业科技, 2002, 32(1):11-12.
FU S H, WU J S, YU Y Q, et al. Observation on the seed characteristics and seedling growth of Phyllostachys praecox[J]. J Shandong For Sci Technol, 2002, 32(1):11-12.DOI: 10.3969/j.issn.1002-2724.2002.01.004.
[18]
周冀衡. 变温催芽对烟草种子萌发和幼苗素质的影响[J]. 种子科技, 1995, 13(4):31-32.
ZHOU J H. Effects of variable temperature and accelerated germination on seed germination and seedling quality of tobacco[J]. Seed Sci Technol, 1995, 13(4):31-32.
[19]
蔡春菊, 彭镇华, 高健, 等. 毛竹种子萌发特性研究[J]. 中国农学通报, 2008, 24(12):163-167.
CAI C J, PENG Z H, GAO J, et al. Seed germination characteristics of Phyllostachys edulis[J]. Chin Agric Sci Bull, 2008, 24(12):163-167.
[20]
蔺吉祥, 张兆军, 李晓宇, 等. 羊草早期幼苗在盐、碱生境下生长与生理适应性的研究[J]. 中国草地学报, 2011, 33(6):64-69.
LIN J X, ZHANG Z J, LI X Y, et al. Study on growth and physio-logical adaptability of Leymus chinensis in early seedlings stage under salt and alkali environments[J]. Chin J Grassland, 2011, 33(6):64-69.
[21]
HANLEY M E. Seedling herbivory,community composition and plant life history traits[J]. Perspect Plant Ecol Evol Syst, 1998, 1(2):191-205.DOI: 10.1078/1433-8319-00058.
[22]
王进, 颜霞, 李军元, 等. 蒙古扁桃(Amygdalus mongolica)种子萌发及幼苗生长对胁迫的响应[J]. 中国沙漠, 2018, 38(1):140-148.
WANG J, YAN X, LI J Y, et al. Response of the seed germination and seedling growth of Amygdalus mongolica to stresses[J]. J Desert Res, 2018, 38(1):140-148.DOI: 10.7522/j.issn.1000-694X.2016.00135.
[23]
何立平, 余敏芬, 李东宾, 等. 华顶杜鹃种子特性、种子萌发和幼苗生长试验研究[J]. 林业科技通讯, 2018(8):30-33.
HE L P, YU M F, LI D B, et al. Study on seed characteristics,germination and seedling growth of Rhododendron huadingense[J]. For Sci Technol, 2018(8):30-33.DOI: 10.13456/j.cnki.lykt.2018.08.010.
[24]
卢起建, 龚繁荣, 李俊. 甜椒耐低温弱光材料筛选方法的研究[J]. 上海农业学报, 2007, 23(4):67-71.
LU Q J, GONG F R, LI J. Screening of sweet pepper materials tolerant to low temperature and light[J]. Acta Agric Shanghai, 2007, 23(4):67-71.DOI: 10.3969/j.issn.1000-3924.2007.04.017.
[25]
BENARD R B, TOFT C A. Effect of seed size on seedling perfor-mance in a long-lived desert perennial shrub (Ericameria nauseosa:Asteraceae)[J]. Int J Plant Sci, 2007, 168(7):1027-1033.DOI: 10.1086/518942.
[26]
王丽娟, 李天来, 齐红岩, 等. 长期夜间亚低温对番茄生长发育及光合产物分配的影响[J]. 沈阳农业大学学报, 2006, 37(3):300-303.
WANG L J, LI T L, QI H Y, et al. Effects of long-term sub-low temperature on growth and development and dry matter distribution in tomato[J]. J Shenyang Agric Univ, 2006, 37(3):300-303.DOI: 10.3969/j.issn.1000-1700.2006.03.010.
[27]
LYNCH J. Root architecture and plant productivity[J]. Plant Physiol, 1995, 109(1):7-13.DOI: 10.1104/pp.109.1.7.
[28]
汪洪, 金继运, 山内章. 以盒维数法分形分析水稻根系形态特征及初探其与锌吸收积累的关系[J]. 作物学报, 2008, 34(9):1637-1643.
WANG H, JIN J Y, YAMAUCHI A. Fractal analysis of root system architecture by box-counting method and its relationship with Zn accumulation in rice (Oryza sativa L.)[J]. Acta Agron Sin, 2008, 34(9):1637-1643.DOI: 10.3321/j.issn:0496-3490.2008.09.021.
[29]
龙毅, 孟凡栋, 王常顺, 等. 高寒草甸主要植物地上地下生物量分布及退化对根冠比和根系表面积的影响[J]. 广西植物, 2015, 35(4):532-538.
LONG Y, MENG F D, WANG C S, et al. Above-and below-ground biomass distribution of main alpine meadow plants and impact of degradation on root/shoot ratio and root area[J]. Guihaia, 2015, 35(4):532-538.DOI: 10.11931/guihaia.gxzw201406032.
[30]
任旭琴, 缪旻珉, 陈晓明, 等. 低温逆境下辣椒根系生长及生理特性的响应[J]. 中国蔬菜, 2007(3):12-14.
REN X Q, MIAO M M, CHEN X M, et al. Effect of low temperature on root growth and physiological characteristics of chilli pepper[J]. China Veg, 2007(3):12-14.DOI: 10.3969/j.issn.1000-6346.2007.03.004.
[31]
高英, 郭建强, 赵金凤. 拟南芥表皮毛发育的分子机制[J]. 植物学报, 2011, 46(1):119-127.
Abstract
拟南芥(Arabidopsis thaliana)表皮毛是存在于地上部分表皮组织的一种特化的、典型的单细胞结构。近几年, 对其发育的分子调控机制的研究取得了很大进展, 已克隆出大量的控制表皮毛不同发育阶段的基因, 通过对这些基因的功能解析揭示出表皮毛发育及生长调节的内在分子机制。该文对拟南芥表皮毛发育的最新研究进展进行综述, 并展望了关于表皮毛的研究方向及潜在的应用价值。
GAO Y, GUO J Q, ZHAO J F. Molecular mechanisms of Arabidopsis trichome development[J]. Bull Bot, 2011, 46(1):119-127.DOI: 10.3724/SP.J.1259.2011.00119.
[32]
张吉科, 张小民, 张国伟 中国沙棘表皮毛的形态分布和类群研究[J]. 林业科学, 1995: 408-413,481-482.
ZHANG J K, ZHANG X M, ZHANG G W. A study on morphoiogy distribution and classification of downiness of Hippophae rhamnoides L.subsp. sinensis rousi[J]. Sci Silvae Sin, 1995: 408-413,481-482.
[33]
HU S A, ZHAO Q L. Studies on epidermal hairs of Gossypium[J]. J Integr Plant Biol, 1992, 34(4):311-314,334.
[34]
刘颖竹, 焦宏彬, 杨雪, 等. 野菊和神农香菊毛状体及叶片表面分泌物的比较[J]. 草业科学, 2016, 33(4):615-621.
LIU Y Z, JIAO H B, YANG X, et al. Comparison of trichomes and their secretion from Dendranthema indicum and D.indicum var.aromaticum[J]. Pratacultural Sci, 2016, 33(4):615-621.DOI: 10.11829/j.issn.1001-0629.2015-0442.
[35]
张继伟, 赵杰才, 周琴, 等. 植物表皮毛研究进展[J]. 植物学报, 2018, 53(5):726-737.
ZHANG J W, ZHAO J C, ZHOU Q, et al. Progress in research of plant trichome[J]. Bull Bot, 2018, 53(5):726-737.DOI: 10.11983/CBB17078.
[36]
WAGNER G J, WANG E, SHEPHERD R W. New approaches for studying and exploiting an old protuberance,the plant trichome[J]. Ann Bot, 2004, 93(1):3-11.DOI: 10.1093/aob/mch011.
[37]
普莉, 索金凤, 薛勇彪. 植物表皮毛发育的分子遗传控制[J]. 遗传学报, 2003, 30(11):1078-1084.
PU L, SUO J F, XUE Y B. Molecular control of plant trichome development[J]. Acta Genet Sin, 2003, 30(11):1078-1084.
[38]
TIAN D, PEIFFER M, DE MORAES C M, et al. Roles of ethylene and jasmonic acid in systemic induced defense in tomato (Solanum lycopersicum) against Helicoverpa zea[J]. Planta, 2014, 239(3):577-589.DOI: 10.1007/s00425-013-1997-7.
[39]
朱燕华, 康宏樟, 刘春江. 植物叶片气孔性状变异的影响因素及研究方法[J]. 应用生态学报, 2011, 22(1):250-256.
ZHU Y H, KANG H Z, LIU C J. Affecting factors of plant stomatal traits variability and relevant investigation methods[J]. Chin J Appl Ecol, 2011, 22(1):250-256.DOI: 10.13287/j.1001-9332.2011.0011.
[40]
SALISBURY E J. On the causes and ecological significance of stomatal frequency,with special reference to the woodland flora[J]. Phil Trans R Soc Lond B, 1928, 216(431-439):1-65.DOI: 10.1098/rstb.1928.0001.
[41]
REDDY K R, ROBANA R R, HODGES H F, et al. Interactions of CO2 enrichment and temperature on cotton growth and leaf characteristics[J]. Environ Exp Bot, 1998, 39(2):117-129.DOI: 10.1016/S0098-8472(97)00028-2.
[42]
王秀玲, 赵明, 王启现, 等. 玉米不同基因型气孔特征和叶温差的研究[J]. 华北农学报, 2004, 19(1):71-74.
WANG X L, ZHAO M, WANG Q X, et al. Studies on stomatal characters and leaf temperature gap of different maize genotypes[J]. Acta Agric Boreali-Sin, 2004, 19(1):71-74.DOI: 10.3321/j.issn:1000-7091.2004.01.020.
[43]
左闻韵, 贺金生, 韩梅, 等. 植物气孔对大气CO2浓度和温度升高的反应:基于在CO2浓度和温度梯度中生长的10种植物的观测[J]. 生态学报, 2005, 25(3):565-574.
ZUO W Y, HE J S, HAN M, et al. Responses of plant stomata to elevated CO2 and temperature:observations from 10 plant species grown in temperature and CO2 gradients[J]. Acta Ecol Sin, 2005, 25(3):565-574.DOI: 10.3321/j.issn:1000-0933.2005.03.025.
[44]
杨利民, 韩梅, 周广胜, 等. 中国东北样带关键种羊草水分利用效率与气孔密度[J]. 生态学报, 2007, 27(1):16-24.
YANG L M, HAN M, ZHOU G S, et al. The changes of water-use efficiency and stoma density of Leymus chinensis along northeast China transect[J]. Acta Ecol Sin, 2007, 27(1):16-24.DOI: 10.3321/j.issn:1000-0933.2007.01.002.
[45]
李璐璐, 姜新强, 刘庆超, 等. 茶梅叶片结构对自然变温的适应[J]. 应用生态学报, 2016, 27(9):2815-2822.
LI L L, JIANG X Q, LIU Q C, et al. Adaptability of Camellia sasanqua leaf morpholo-gy during natural changes in temperature[J]. Chin J Appl Ecol, 2016, 27(9):2815-2822.DOI: 10.13287/j.1001-9332.201609.032.

RIGHTS & PERMISSIONS

Copyright reserved © 2021
PDF(5074 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/