
Physiological responses of Phoebe zhennan seeds during dehydration
LI Jiaqi, XUE Xiaoming, GAO Handong
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (3) : 130-136.
Physiological responses of Phoebe zhennan seeds during dehydration
【Objective】The present study aimed to determine the effects of dehydration on the physiological responses of Phoebe zhennan seeds, to provide a basis for a long-term seed preservation. 【Method】Phoebe zhennan seeds were dehydrated using the silica gel. When the water loss reached 0, 3%, 6%, 9%, 12%, 15% and 18%, physiological indexes of the samples were measured. 【Result】The initial water content of P. zhennan seeds was 37.74%, viability was 89.41%, and the half-lethal water content was 29.09%. The viability of P. zhennan seeds gradually decreased during the gel dehydration, and the electrical conductivity and malondialdehyde (MDA) contents continuously increased. Superoxide dismutase (SOD) and catalase (CAT) activities first increased, then sharply decreased. The activities of SOD and CAT negatively correlated with electrical conductivity and MDA content (correlation coefficients: -0.833 and -0.743; -0.819 and -0.871, respectively). The results showed that dehydration inhibited the viability of the protective enzyme system, and strengthened membrane lipid peroxidation. The decrease or complete loss of seed viability led to the increased membrane permeability and peroxide accumulation. 【Conclusion】Water conditions should be carefully managed during storage because P. zhennan seeds are highly recalcitrant. However, slight dehydration can stimulate activity of the protective enzyme (antioxidant) system, which helps to improve the dehydration tolerance. The optimum water content for P. zhennan seeds’ preservation is 34.74%, and in actual production, it can be controlled within its 3%.
recalcitrant seed / dehydration tolerance / antioxidant enzyme / membrane lipid peroxidation / seed storage
[1] |
国家林业局国有林场和林木种苗工作总站. 中国木本植物种子[M]. 北京: 中国林业出版社, 2001: 207-210.
State-owned Forest Farm and Forest Seedling Work Station. Seeds of woody plants in China[M]. Beijing: China Forestry Publishing House, 2001: 207-210.
|
[2] |
李锡民. 中国植物志[M]. 北京: 科学出版社, 1982: 113.
|
[3] |
杨娅娟, 郭永杰, 秦少发, 等. 云南九种樟科植物种子的萌发及脱水耐性[J]. 植物分类与资源学报, 2015,37(6):813-820.
|
[4] |
贾贤, 黄秋生, 刘光华, 等. 我国楠木资源的研究现状[J]. 中国园艺文摘, 2014,30(10):55-59.
|
[5] |
|
[6] |
崔令军, 刘瑜霞, 林健, 等. 丛枝菌根真菌对盐胁迫下桢楠光合生理的影响[J]. 南京林业大学学报(自然科学版), 2021,45(1):101-106.
|
[7] |
铁得祥, 胡红玲, 喻秀艳, 等. 桢楠幼树光合特性对镉胁迫的响应[J]. 生态学报, 2020,40(11):3738-3746.
|
[8] |
陈桂琼. 浅谈楠木育苗与造林技术应用[J]. 农业与技术, 2018,38(17):66-67.
|
[9] |
张熠. 珍贵树种桢楠的种植技术探讨[J]. 南方农业, 2019,13(32):13-14.
|
[10] |
曹健, 裴云霞, 陈欣媛, 等. 楠木育苗技术研究进展[J]. 湖北民族大学学报(自然科学版), 2020,38(3):270-276.
|
[11] |
李铁华, 文仕知, 喻勋林, 等. 楠木种子活力变化机制的研究[J]. 中国种业, 2008(8):49-51.
|
[12] |
李铁华, 文仕知, 彭险峰, 等. 楠木种子活力下降机制研究[J]. 中南林业科技大学学报, 2009,29(5):110-114, 135.
|
[13] |
国家质量技术监督局. 林木种子检验规程: GB 2772—1999[S]. 北京:中国标准出版社, 2000.
|
[14] |
温祺. 栓皮栎种子贮藏机理及育苗技术研究[D]. 北京: 北京林业大学, 2010.
|
[15] |
胡晋. 种子检验学[M]. 北京: 科学出版社, 2015.
|
[16] |
宋松泉. 种子生物学研究指南[M]. 北京: 科学出版社, 2005.
|
[17] |
邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2000.
|
[18] |
尹永强, 胡建斌, 邓明军. 植物叶片抗氧化系统及其对逆境胁迫的响应研究进展[J]. 中国农学通报, 2007,23(1):105-110.
|
[19] |
梁新华. 干旱胁迫对甘草种子萌发及CAT活性的影响[J]. 宁夏农林科技, 2004,45(3):1-3.
|
[20] |
|
[21] |
|
[22] |
|
[23] |
沈海龙. 苗木培育学[M]. 北京: 中国林业出版社, 2009: 30-40.
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
/
〈 |
|
〉 |