JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (1): 25-32.doi: 10.12302/j.issn.1000-2006.202002048
Special Issue: "双碳”视域下的土壤碳
Previous Articles Next Articles
HUANG Zijing1(), XU Xia1,*(), ZHANG Huiguang2, CAI Bin2, LI Liangbin2
Received:
2020-02-28
Accepted:
2020-09-22
Online:
2022-01-30
Published:
2022-02-09
Contact:
XU Xia
E-mail:zijinghuang@163.com;xuxia.1982@yahoo.com
CLC Number:
HUANG Zijing, XU Xia, ZHANG Huiguang, CAI Bin, LI Liangbin. Advances in effects of root input on forest soil carbon pool and carbon cycle[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(1): 25-32.
[1] |
FAO. Global forest resources assessment 2010[M]. FAO, 2010.DOI: 10.4060/ca8753en.
doi: 10.4060/ca8753en |
[2] |
PAN Y, BIRDSEY R A, FANG J Y, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333(6045):988-993.DOI: 10.1126/science.1201609.
doi: 10.1126/science.1201609 |
[3] |
LITTON C M, RAICH J W, RYAN M G. Carbon allocation in forest ecosystems[J]. Global Change Biology, 2007, 13(10):2089-2109.DOI: 10.1111/j.1365-2486.2007.01420.x.
doi: 10.1111/j.1365-2486.2007.01420.x |
[4] |
YIN H, LI Y, XIAO J, et al. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming[J]. Global Change Biology, 2013, 19(7):2158-2167.DOI: 10.1111/gcb.12161.
doi: 10.1111/gcb.12161 |
[5] |
BAI W M, WAN S Q, NIU S L, et al. Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling[J]. Global Change Biology, 2010, 16(4):1306-1316. DOI: 10.1111/j.1365-2486.2009.02019.x.
doi: 10.1111/j.1365-2486.2009.02019.x |
[6] |
BRUNNER I, GODBOLD D L. Tree roots in a changing world[J]. Journal of Forest Research, 2007, 12(2):78-82.DOI: 10.1007/s10310-006-0261-4.
doi: 10.1007/s10310-006-0261-4 |
[7] |
LUKAC M. Fine root turnover[M]// Measuring Roots.Berlin,Heidelberg:Springer Inc, 2011:363-373.DOI: 10.1007/978-3-642-22067-8_18.
doi: 10.1007/978-3-642-22067-8_18 |
[8] |
DORNBUSH M E, ISENHART T M, RAICH J W. Quantifying fine-root decomposition:an alternative to buried litterbags[J]. Ecology, 2002, 83(11):2985-2990. DOI: 10.1890/0012-9658(2002)083[2985:QFRDAA]2.0.CO;2.
doi: 10.1890/0012-9658(2002)083 |
[9] |
ARGIROFF W A, ZAK D R, UPCHURCH R A, et al. Anthropogenic N deposition alters soil organic matter biochemistry and microbial communities on decaying fine roots[J]. Global Change Biology, 2019, 25(12):4369-4382. DOI: 10.1111/gcb.14770.
doi: 10.1111/gcb.14770 |
[10] |
KÄTTERER T, BOLINDER M A, ANDRÉN O, et al. Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment[J]. Agriculture, Ecosystems & Environment, 2011, 141(1/2):184-192. DOI: 10.1016/j.agee.2011.02.029.
doi: 10.1016/j.agee.2011.02.029 |
[11] |
XIA M X, TALHELM A F, PREGITZER K S. Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests[J]. New Phytologist, 2015, 208(3):715-726. DOI: 10.1111/nph.13494.
doi: 10.1111/nph.13494 |
[12] |
RASSE D P, RUMPEL C, DIGNAC M F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation[J]. Plant and Soil, 2005, 269(1/2):341-356. DOI: 10.1007/s11104-004-0907-y.
doi: 10.1007/s11104-004-0907-y |
[13] |
JONES D L, NGUYEN C, FINLAY R D. Carbon flow in the rhizosphere:carbon trading at the soil-root interface[J]. Plant and Soil, 2009, 321(1/2):5-33. DOI: 10.1007/s11104-009-9925-0.
doi: 10.1007/s11104-009-9925-0 |
[14] |
吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38:298-310.
doi: 10.3724/SP.J.1258.2014.00027 |
WU L K, LIN X M, LIN W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chin J Plan Ecolo, 2014, 38(3):298-310.DOI: 10.3724/SP.J.1258.2014.00027
doi: 10.3724/SP.J.1258.2014.00027 |
|
[15] | 王振宇, 吕金印, 李凤民, 等. 根际沉积及其在植物-土壤碳循环中的作用[J]. 应用生态学报, 2006, 17(10):1963-1968. |
WANG Z Y, LYU E, LI F M, et al. Rhizodeposition and its role in carbon cycling in plant-soil system[J]. Chin J Appl Ecol, 2006, 17(10):1963-1968. | |
[16] |
SCHMIDT M W I, TORN M S, ABIVEN S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7367):49-56. DOI: 10.1038/nature10386.
doi: 10.1038/nature10386 |
[17] |
CLEMMENSEN K E, BAHR A, OVASKAINEN O, et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest[J]. Science, 2013, 339(6127):1615-1618. DOI: 10.1126/science.1231923.
doi: 10.1126/science.1231923 |
[18] |
JACKSON O, QUILLIAM R S, STOTT A, et al. Rhizosphere carbon supply accelerates soil organic matter decomposition in the presence of fresh organic substrates[J]. Plant and Soil, 2019, 440(1/2):473-490. DOI: 10.1007/s11104-019-04072-3.
doi: 10.1007/s11104-019-04072-3 |
[19] |
OHASHI M, MAKITA N, KATAYAMA A, et al. Characteristics of root decomposition based on in situ experiments in a tropical rainforest in Sarawak,Malaysia:impacts of root diameter and soil biota[J]. Plant and Soil, 2019, 436(1/2):439-448. DOI: 10.1007/s11104-018-03929-3.
doi: 10.1007/s11104-018-03929-3 |
[20] |
SOKOL N W, KUEBBING S E, KARLSEN-AYALA E, et al. Evidence for the primacy of living root inputs,not root or shoot litter,in forming soil organic carbon[J]. New Phytologist, 2019, 221(1):233-246. DOI: 10.1111/nph.15361.
doi: 10.1111/nph.15361 |
[21] |
SHAMOOT S, MCDONALD L, BARTHOLOMEW W V. Rhizo-deposition of organic debris in soil[J]. Soil Science Society of America Journal, 1968, 32(6):817. DOI: 10.2136/sssaj1968.03615995003200060031x.
doi: 10.2136/sssaj1968.03615995003200060031x |
[22] |
BURTON A J, PREGITZER K S, HENDRICK R L. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests[J]. Oecologia, 2000, 125(3):389-399. DOI: 10.1007/s004420000455.
doi: 10.1007/s004420000455 |
[23] |
MAJDI H, TRUUS L, JOHANSSON U, et al. Effects of slash retention and wood ash addition on fine root biomass and production and fungal mycelium in a Norway spruce stand in SW Sweden[J]. Forest ecology and management, 2008, 255(7):2109-2117. DOI: 10.1016/j.foreco.2007.12.017.
doi: 10.1016/j.foreco.2007.12.017 |
[24] |
FINÉR L, OHASHI M, NOGUCHI K, et al. Factors causing variation in fine root biomass in forest ecosystems[J]. Forest ecology and management, 2011, 261(2):265-277. DOI: 10.1016/j.foreco.2010.10.016.
doi: 10.1016/j.foreco.2010.10.016 |
[25] |
CHAPIN F S, MATSON P A, MOONEY H A. Principles of terrestrial ecosystem ecology[M]. New York:Springer, 2002. DOI: 10.1007/b97397.
doi: 10.1007/b97397 |
[26] |
YANG Y S, CHEN G S, GUO J F, et al. Decomposition dynamic of fine roots in a mixed forest of Cunninghamia lanceolata and Tsoongiodendron odorum in mid-subtropics[J]. Ann For Sci, 2004, 61(1):65-72. DOI: 10.1051/forest:2003085.
doi: 10.1051/forest:2003085 |
[27] |
BERG B. Litter decomposition and organic matter turnover in northern forest soils[J]. Forest ecology and management, 2000, 133(1/2):13-22. DOI: 10.1016/s0378-1127(99)00294-7.
doi: 10.1016/s0378-1127(99)00294-7 |
[28] | 林成芳, 郭剑芬, 陈光水, 等. 森林细根分解研究进展[J]. 生态学杂志, 2008, 27(6):1029-1036. |
LIN C F, GUO J F, CHEN G S, et al. Research progress in fine root decomposition in forest ecosystem[J]. Chin J Ecol, 2008, 27(6):1029-1036.DOI: 10.13292/j.1000-4890.2008.0211.
doi: 10.13292/j.1000-4890.2008.0211 |
|
[29] |
PAUSCH J, KUZYAKOV Y. Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale[J]. Global Change Biology, 2018, 24(1):1-12.DOI: 10.1111/gcb.13850.
doi: 10.1111/gcb.13850 |
[30] |
尹华军, 张子良, 刘庆. 森林根系分泌物生态学研究:问题与展望[J]. 植物生态学报, 2018, 42:1055-1070.
doi: 10.17521/cjpe.2018.0156 |
YIN H J, ZHANG Z L, LIU Q. Root exudates and their ecological consequences in forest ecosystems: problems and perspective[J]. Chin J Plan Ecolo, 2018, 42(11):1055-1070.DOI: 10.17521/cjpe.2018.0156.
doi: 10.17521/cjpe.2018.0156 |
|
[31] |
HÖGBERG P, HÖGBERG M N, GÖTTLICHER S G, et al. High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms[J]. New Phytologist, 2008, 177:220-228.DOI: 10.1111/j.1469-8137.2007.02238.x.
doi: 10.1111/j.1469-8137.2007.02238.x |
[32] |
BAHN M, SCHMITT M, SIEGWOLF R, et al. Does photosynjournal affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale?[J]. New Phytologist, 2009, 182(2):451-460. DOI: 10.1111/j.1469-8137.2008.02755.x.
doi: 10.1111/j.1469-8137.2008.02755.x |
[33] |
DAKORA F D, PHILLIPS D A. Root exudates as mediators of mineral acquisition in low-nutrient environments[J]. Plant and Soil, 2002, 245(1):35-47. DOI: 10.1023/A:1020809400075.
doi: 10.1023/A:1020809400075 |
[34] |
HÖGBERG M N, BRIONES M J I, KEEL S G, et al. Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest[J]. New Phytologist, 2010, 187(2):485-493. DOI: 10.1111/j.1469-8137.2010.03274.x.
doi: 10.1111/j.1469-8137.2010.03274.x |
[35] | 王清奎. 碳输入方式对森林土壤碳库和碳循环的影响研究进展[J]. 应用生态学报, 2011, 22(4):1075-1081. |
WANG Q K. Responses of forest soil carbon pool and carbon cycle to the changes of carbon input[J]. Chin J Appl Ecol, 2011, 22(4):1075-1081.DOI: 10.13287/j.1001-9332.2011.0111.
doi: 10.13287/j.1001-9332.2011.0111 |
|
[36] |
WEINTRAUB M N, SCOTT-DENTON L E, SCHMIDT S K, et al. The effects of tree rhizodeposition on soil exoenzyme activity,dissolved organic carbon,and nutrient availability in a subalpine forest ecosystem[J]. Oecologia, 2007, 154(2):327-338. DOI: 10.1007/s00442-007-0804-1.
doi: 10.1007/s00442-007-0804-1 |
[37] |
SUBKE J A, HAHN V, BATTIPAGLIA G, et al. Feedback interactions between needle litter decomposition and rhizosphere activity[J]. Oecologia, 2004, 139(4):551-559. DOI: 10.1007/s00442-004-1540-4.
doi: 10.1007/s00442-004-1540-4 |
[38] |
FENG W T, ZOU X M, SCHAEFER D. Above-and belowground carbon inputs affect seasonal variations of soil microbial biomass in a subtropical monsoon forest of southwest China[J]. Soil Biology and Biochemistry, 2009, 41(5):978-983. DOI: 10.1016/j.soilbio.2008.10.002.
doi: 10.1016/j.soilbio.2008.10.002 |
[39] |
JACKSON R B, LAJTHA K, CROW S E, et al. The ecology of soil carbon:pools,vulnerabilities,and biotic and abiotic controls[J]. Annual Review of Ecology, Evolution, and Systematics, 2017, 48(1):419-445. DOI: 10.1146/annurev-ecolsys-112414-054234.
doi: 10.1146/annurev-ecolsys-112414-054234 |
[40] |
FEKETE I, KOTROCZÓZ, VARGA C, et al. Alterations in forest detritus inputs influence soil carbon concentration and soil respiration in a Central-European deciduous forest[J]. Soil Biology and Biochemistry, 2014, 74:106-114.DOI: 10.1016/j.soilbio.2014.03.006.
doi: 10.1016/j.soilbio.2014.03.006 |
[41] |
LAJTHA K, BOWDEN R D, NADELHOFFER K. Litter and root manipulations provide insights into soil organic matter dynamics and stability[J]. Soil Science Society of America Journal, 2014, 78(S1):S261-S269. DOI: 10.2136/sssaj2013.08.0370nafsc.
doi: 10.2136/sssaj2013.08.0370nafsc |
[42] |
CHENG L, BOOKER F L, TU C, et al. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2[J]. Science, 2012, 337(6098):1084-1087. DOI: 10.1126/science.1224304.
doi: 10.1126/science.1224304 |
[43] |
FINZI A C, ABRAMOFF R Z, SPILLER K S, et al. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles[J]. Global Change Biology, 2015, 21(5):2082-2094. DOI: 10.1111/gcb.12816.
doi: 10.1111/gcb.12816 |
[44] |
梁儒彪, 梁进, 乔明锋, 等. 模拟根系分泌物C:N化学计量特征对川西亚高山森林土壤碳动态和微生物群落结构的影响[J]. 植物生态学报, 2015, 39(5):466-476.
doi: 10.17521/cjpe.2015.0045 |
LIANG R B, LIANG J, QIAO M F, et al. Effects of simulated exudate C:N stoichiometry on dynamics of carbon and microbial community composition in a subalpine coniferous forest of western Sichuan,China[J]. Acta Phytoecol Sin, 2015, 39(5):466-476.DOI: 10.17521/cjpe.2015.0045.
doi: 10.17521/cjpe.2015.0045 |
|
[45] |
CHEN D M, ZHOU L X, WU J P, et al. Tree girdling affects the soil microbial community by modifying resource availability in two subtropical plantations[J]. Applied Soil Ecology, 2012, 53:108-115. DOI: 10.1016/j.apsoil.2011.10.014.
doi: 10.1016/j.apsoil.2011.10.014 |
[46] |
JONES D L, HODGE A, KUZYAKOV Y. Plant and mycorrhizal regulation of rhizodeposition[J]. New Phytologist, 2004, 163(3):459-480. DOI: 10.1111/j.1469-8137.2004.01130.x.
doi: 10.1111/j.1469-8137.2004.01130.x |
[47] |
VON LÜTZOW M, KÖGEL-KNABNER I, EKSCHMITT K, et al. SOM fractionation methods:relevance to functional pools and to stabilization mechanisms[J]. Soil Biology and Biochemistry, 2007, 39(9):2183-2207. DOI: 10.1016/j.soilbio.2007.03.007.
doi: 10.1016/j.soilbio.2007.03.007 |
[48] |
PARTON W J, SCHIMEL D S, COLE C V, et al. Analysis of factors controlling soil organic matter levels in great plains grasslands[J]. Soil Science Society of America Journal, 1987, 51(5):1173-1179. DOI: 10.2136/sssaj1987.03615995005100050015x.
doi: 10.2136/sssaj1987.03615995005100050015x |
[49] |
KORANDA M, SCHNECKER J, KAISER C, et al. Microbial processes and community composition in the rhizosphere of European beech: the influence of plant C exudates[J]. Soil Biology and Biochemistry, 2011, 43(3):551-558. DOI: 10.1016/j.soilbio.2010.11.022.
doi: 10.1016/j.soilbio.2010.11.022 |
[50] |
SCOTT-DENTON L E, ROSENSTIEL T N, MONSON R K. Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration[J]. Global Change Biology, 2006, 12(2):205-216. DOI: 10.1111/j.1365-2486.2005.01064.x.
doi: 10.1111/j.1365-2486.2005.01064.x |
[51] |
GÖTTLICHER S G, STEINMANN K, BETSON N R, et al. The dependence of soil microbial activity on recent photosynthate from trees[J]. Plant and Soil, 2006, 287(1/2):85-94. DOI: 10.1007/s11104-006-0062-8.
doi: 10.1007/s11104-006-0062-8 |
[52] |
HÖGBERG M N, HÖGBERG P. Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces,together with associated roots,half the dissolved organic carbon in a forest soil[J]. New Phytologist, 2002, 154(3):791-795. DOI: 10.1046/j.1469-8137.2002.00417.x.
doi: 10.1046/j.1469-8137.2002.00417.x |
[53] |
SMITH J L, PAUL E A. The significance of soil microbial biomass estimations[M]// Soil biochemistry. New York: Marcel Dekker, 2017:357-386. DOI: 10.1201/9780203739389-7.
doi: 10.1201/9780203739389-7 |
[54] |
HÖGBERG M N, HÖGBERG P, MYROLD D D. Is microbial community composition in boreal forest soils determined by pH,C-to-N ratio,the trees,or all three?[J]. Oecologia, 2007, 150(4):590-601. DOI: 10.1007/s00442-006-0562-5.
doi: 10.1007/s00442-006-0562-5 |
[55] |
ZELLER B, LIU J X, BUCHMANN N, et al. Tree girdling increases soil N mineralisation in two spruce stands[J]. Soil Biology and Biochemistry, 2008, 40(5):1155-1166. DOI: 10.1016/j.soilbio.2007.12.009.
doi: 10.1016/j.soilbio.2007.12.009 |
[56] |
SIX J, CONANT R T, PAUL E A, et al. Stabilization mechanisms of soil organic matter:implications for C-saturation of soils[J]. Plant and Soil, 2002, 241(2):155-176. DOI: 10.1023/A:1016125726789.
doi: 10.1023/A:1016125726789 |
[57] |
JASTROW J D, AMONETTE J E, BAILEY V L. Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration[J]. Climatic Change, 2007, 80(1/2):5-23.DOI: 10.1007/s10584-006-9178-3.
doi: 10.1007/s10584-006-9178-3 |
[58] |
THEVENOT M, DIGNAC M F, RUMPEL C. Fate of lignins in soils: a review[J]. Soil Biology and Biochemistry, 2010, 42(8):1200-1211.DOI: 10.1016/j.soilbio.2010.03.017.
doi: 10.1016/j.soilbio.2010.03.017 |
[59] |
LORENZ K, LAL R, PRESTON C M, et al. Strengthening the soil organic carbon pool by increasing contributions from recalcitrant aliphatic bio(macro)molecules[J]. Geoderma, 2007, 142(1):1-10. DOI: 10.1016/j.geoderma.2007.07.013.
doi: 10.1016/j.geoderma.2007.07.013 |
[60] |
SIX J, BOSSUYT H, DEGRYZE S, et al. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 2004, 79(1):7-31.DOI: 10.1016/j.still.2004.03.008.
doi: 10.1016/j.still.2004.03.008 |
[61] |
RILLIG M C, MUMMEY D L. Mycorrhizas and soil structure[J]. New Phytologist, 2006, 171(1):41-53. DOI: 10.1111/j.1469-8137.2006.01750.x.
doi: 10.1111/j.1469-8137.2006.01750.x |
[62] | 宋日, 刘利, 吴春胜, 等. 大豆根系分泌物对土壤团聚体大小和稳定性的影响[J]. 东北林业大学学报, 2009, 37(7):84-86. |
SONG R, LIU L, WU C S, et al. Effect of soybean root exudates on soil aggregate size and stability[J]. J Northeast For Univ, 2009, 37(7):84-86.DOI: 10.3969/j.issn.1000-5382.2009.07.028.
doi: 10.3969/j.issn.1000-5382.2009.07.028 |
|
[63] | 苑亚茹, 韩晓增, 李禄军, 等. 低分子量根系分泌物对土壤微生物活性及团聚体稳定性的影响[J]. 水土保持学报, 2011, 25(6):96-99. |
YUAN Y R, HAN X Z, LI L J, et al. Effects of soluble root exudates on microbial activity and aggregate stability of black soils[J]. J Soil Water Conserv, 2011, 25(6):96-99.DOI: 10.13870/j.cnki.stbcxb.2011.06.036.
doi: 10.13870/j.cnki.stbcxb.2011.06.036 |
|
[64] | 李杨, 仲波, 陈冬明, 等. 不同浓度和多样性的根系分泌物对土壤团聚体稳定性的影响[J]. 应用与环境生物学报, 2019, 25(5):1061-1067. |
LI Y, ZHONG B, CHEN D M, et al. Effects of root exudates of different carbon concentrations and sources on soil aggregate stability[J]. Chin J Appl Environ Biol, 2019, 25(5):1061-1067.DOI: 10.19675/j.cnki.1006-687x.2018.12036.
doi: 10.19675/j.cnki.1006-687x.2018.12036 |
|
[65] |
BARDGETT R D, MOMMER L, DE VRIES F T. Going underground:root traits as drivers of ecosystem processes[J]. Trends in Ecology & Evolution, 2014, 29(12):692-699. DOI: 10.1016/j.tree.2014.10.006.
doi: 10.1016/j.tree.2014.10.006 |
[66] |
BAIS H P, WEIR T L, PERRY L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annual Review of Plant Biology, 2006, 57:233-266. DOI: 10.1146/annurev.arplant.57.032905.105159.
doi: 10.1146/annurev.arplant.57.032905.105159 |
[67] |
LEIFHEIT E F, VERESOGLOU S D, LEHMANN A, et al. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation:a meta-analysis[J]. Plant and Soil, 2014, 374(1/2):523-537. DOI: 10.1007/s11104-013-1899-2.
doi: 10.1007/s11104-013-1899-2 |
[68] |
FAUCON M P, HOUBEN D, LAMBERS H. Plant functional traits:soil and ecosystem services[J]. Trends in Plant Science, 2017, 22(5):385-394. DOI: 10.1016/j.tplants.2017.01.005.
doi: 10.1016/j.tplants.2017.01.005 |
[69] |
RILLIG M C, RAMSEY P W, MORRIS S, et al. Glomalin,an arbuscular-mycorrhizal fungal soil protein,responds to land-use change[J]. Plant and Soil, 2003, 253(2):293-299. DOI: 10.1023/A:1024807820579.
doi: 10.1023/A:1024807820579 |
[70] |
KALLENBACH C M, FREY S D, GRANDY A S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls[J]. Nature Communications, 2016, 7:13630. DOI: 10.1038/ncomms13630.
doi: 10.1038/ncomms13630 |
[71] |
PETT-RIDGE J, FIRESTONE M K. Using stable isotopes to explore root-microbe-mineral interactions in soil[J]. Rhizosphere, 2017, 3:244-253. DOI: 10.1016/j.rhisph.2017.04.016.
doi: 10.1016/j.rhisph.2017.04.016 |
[72] |
KLEBER M, SOLLINS P, SUTTON R. A conceptual model of organo-mineral interactions in soils:self-assembly of organic molecular fragments into zonal structures on mineral surfaces[J]. Biogeochemistry, 2007, 85(1):9-24. DOI: 10.1007/s10533-007-9103-5.
doi: 10.1007/s10533-007-9103-5 |
[73] |
KEILUWEIT M, BOUGOURE J J, NICO P S, et al. Mineral protection of soil carbon counteracted by root exudates[J]. Nature Climate Change, 2015, 5(6):588-595. DOI: 10.1038/nclimate2580.
doi: 10.1038/nclimate2580 |
[74] |
HÖGBERG P, NORDGREN A, BUCHMANN N, et al. Large-scale forest girdling shows that current photosynjournal drives soil respiration[J]. Nature, 2001, 411(6839):789-792. DOI: 10.1038/35081058.
doi: 10.1038/35081058 |
[75] |
AHMED M A, SANAULLAH M, BLAGODATSKAYA E, et al. Soil microorganisms exhibit enzymatic and priming response to root mucilage under drought[J]. Soil Biology and Biochemistry, 2018, 116:410-418. DOI: 10.1016/j.soilbio.2017.10.041.
doi: 10.1016/j.soilbio.2017.10.041 |
[76] |
HÖGBERG P, BHUPINDERPAL-SINGH, LÖFVENIUS M O, et al. Partitioning of soil respiration into its autotrophic and heterotrophic components by means of tree-girdling in old boreal spruce forest[J]. Forest Ecology and Management, 2009, 257(8):1764-1767. DOI: 10.1016/j.foreco.2009.01.036.
doi: 10.1016/j.foreco.2009.01.036 |
[77] |
FREY B, HAGEDORN F, GIUDICI F. Effect of girdling on soil respiration and root composition in a sweet chestnut forest[J]. Forest Ecology and Management, 2006, 225(1/2/3):271-277. DOI: 10.1016/j.foreco.2006.01.003.
doi: 10.1016/j.foreco.2006.01.003 |
[78] |
LI Y Q, XU M, SUN O J, et al. Effects of root and litter exclusion on soil CO2 efflux and microbial biomass in wet tropical forests[J]. Soil Biology and Biochemistry, 2004, 36(12):2111-2114. DOI: 10.1016/j.soilbio.2004.06.003.
doi: 10.1016/j.soilbio.2004.06.003 |
[79] |
HUANG W J, HAN T F, LIU J X, et al. Changes in soil respiration components and their specific respiration along three successional forests in the subtropics[J]. Functional Ecology, 2016, 30(8):1466-1474. DOI: 10.1111/1365-2435.12624.
doi: 10.1111/1365-2435.12624 |
[80] |
BRANT J B, MYROLD D D, SULZMAN E W. Root controls on soil microbial community structure in forest soils[J]. Oecologia, 2006, 148(4):650-659. DOI: 10.1007/s00442-006-0402-7.
doi: 10.1007/s00442-006-0402-7 |
[81] |
BROECKLING C D, BROZ A K, BERGELSON J, et al. Root exudates regulate soil fungal community composition and diversity[J]. Applied and Environmental Microbiology, 2008, 74(3):738-744. DOI: 10.1128/AEM.02188-07.
doi: 10.1128/AEM.02188-07 |
[82] |
HASSELQUIST N J, METCALFE D B, INSELSBACHER E, et al. Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest[J]. Ecology, 2015:15-1222.1. DOI: 10.1890/15-1222.1.
doi: 10.1890/15-1222.1 |
[83] |
SIIRA-PIETIKÄINEN A, HAIMI J, FRITZE H. Organisms,decomposition,and growth of pine seedlings in boreal forest soil affected by sod cutting and trenching[J]. Biology and Fertility of Soils, 2003, 37(3):163-174. DOI: 10.1007/s00374-002-0571-4.
doi: 10.1007/s00374-002-0571-4 |
[84] |
WANG Q K, HE T X, WANG S L, et al. Carbon input manipulation affects soil respiration and microbial community composition in a subtropical coniferous forest[J]. Agricultural and Forest Meteorology, 2013, 178/179:152-160. DOI: 10.1016/j.agrformet.2013.04.021.
doi: 10.1016/j.agrformet.2013.04.021 |
[85] |
PISANI O, LIN L H, LUN O O, et al. Long-term doubling of litter inputs accelerates soil organic matter degradation and reduces soil carbon stocks[J]. Biogeochemistry, 2016, 127(1):1-14. DOI: 10.1007/s10533-015-0171-7.
doi: 10.1007/s10533-015-0171-7 |
[86] |
MA X M, ZAREBANADKOUKI M, KUZYAKOV Y, et al. Spatial patterns of enzyme activities in the rhizosphere:effects of root hairs and root radius[J]. Soil Biology and Biochemistry, 2018, 118:69-78. DOI: 10.1016/j.soilbio.2017.12.009.
doi: 10.1016/j.soilbio.2017.12.009 |
[87] |
KUZYAKOV Y, BLAGODATSKAYA E. Microbial hotspots and hot moments in soil:concept & review[J]. Soil Biology and Biochemistry, 2015, 83:184-199. DOI: 10.1016/j.soilbio.2015.01.025.
doi: 10.1016/j.soilbio.2015.01.025 |
[88] |
BURNS R G, DEFOREST J L, MARXSEN J, et al. Soil enzymes in a changing environment:current knowledge and future directions[J]. Soil Biology and Biochemistry, 2013, 58:216-234. DOI: 10.1016/j.soilbio.2012.11.009.
doi: 10.1016/j.soilbio.2012.11.009 |
[89] |
HARDER W, DIJKHUIZEN L. Physiological responses to nutrient limitation[J]. Annual Review of Microbiology, 1983, 37:1-23. DOI: 10.1146/annurev.mi.37.100183.000245.
doi: 10.1146/annurev.mi.37.100183.000245 |
[90] | 阮超越, 刘小飞, 吕茂奎, 等. 杉木人工林凋落物添加与去除对土壤碳氮及酶活性的影响[J]. 土壤学报, 2020, 57(4):954-962. |
RUAN C Y, LIU X F, LÜ M K, et al. Effects of litter carbon, nitrogen and enzyme activity in soil under Chinese fir[J]. Acta Pedologica Sinica, 2020, 57(4):954-962.DOI: 10.11766/trxb201808060408.
doi: 10.11766/trxb201808060408 |
|
[91] |
PHILLIPS R P, FINZI A C, BERNHARDT E S. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation[J]. Ecology Letters, 2011, 14(2):187-194. DOI: 10.1111/j.1461-0248.2010.01570.x.
doi: 10.1111/j.1461-0248.2010.01570.x |
[92] |
SINSABAUGH R L, BELNAP J, FINDLAY S G, et al. Extracellular enzyme kinetics scale with resource availability[J]. Biogeochemistry, 2014, 121(2):287-304. DOI: 10.1007/s10533-014-0030-y.
doi: 10.1007/s10533-014-0030-y |
[93] |
CHEN R R, SENBAYRAM M, BLAGODATSKY S, et al. Soil C and N availability determine the priming effect:microbial N mining and stoichiometric decomposition theories[J]. Global Change Biology, 2014, 20(7):2356-2367. DOI: 10.1111/gcb.12475.
doi: 10.1111/gcb.12475 |
[94] |
STOCK S, KOSTER M, DIPPOLD M A, et al. Environmental drivers and stoichiometric constraints on enzyme activities in soils from rhizosphere to continental scale[J]. Geoderma, 2019, 337:973-982. DOI: 10.1016/j.geoderma.2018.10.030.
doi: 10.1016/j.geoderma.2018.10.030 |
[95] |
KAISER C, KORANDA M, KITZLER B, et al. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil[J]. New Phytologist, 2010, 187(3):843-858. DOI: 10.1111/j.1469-8137.2010.03321.x.
doi: 10.1111/j.1469-8137.2010.03321.x |
[96] |
BUÉE M, BOER W, MARTIN F, et al. The rhizosphere zoo:an overview of plant-associated communities of microorganisms,including phages,bacteria,archaea,and fungi,and of some of their structuring factors[J]. Plant and Soil, 2009, 321(1/2):189-212. DOI: 10.1007/s11104-009-9991-3.
doi: 10.1007/s11104-009-9991-3 |
[97] |
MOORHEAD D L, LASHERMES G, SINSABAUGH R L. A theoretical model of C-and N-acquiring exoenzyme activities,which balances microbial demands during decomposition[J]. Soil Biology and Biochemistry, 2012, 53:133-141. DOI: 10.1016/j.soilbio.2012.05.011.
doi: 10.1016/j.soilbio.2012.05.011 |
[98] |
SINSABAUGH R L, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry and ecological theory[J]. Annual Review of Ecology, Evolution, and Systematics, 2012, 43(1):313-343. DOI: 10.1146/annurev-ecolsys-071112-124414.
doi: 10.1146/annurev-ecolsys-071112-124414 |
[1] | LIN Jie, ZHANG Xiang, JIANG Jiang, KUAI Jie, GUO Geng, MENG Miaojing, LI Xiao. A review on the soil organic carbon cycling under water erosion [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 187-194. |
[2] | LEI Haiqing, SUN Gaoqiu, ZHENG Deli. Carbon storage of forest ecosystem in Wenzhou City, Zhejiang Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 20-26. |
[3] | XIE Junyi, XU Xia, CAI Bin, ZHANG Huiguang. Responses of forest soil labile nitrogen pool and nitrogen cycle to the changes of carbon input under “carbon neutrality” [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 1-11. |
[4] | WANG Shaojun, ZUO Qianqian, CAO Qianbin, WANG Ping, YANG Bo, ZHAO Shuang, CHEN Minkun. Response of readily oxidized carbon to arbuscular mycorrhizal (AM) fungi inoculations in rocky desert soil, Xundian, Yunnan Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(1): 7-14. |
[5] | GUO Liang, DING Jiuming, XU Xia. Advances in research on methane from tree stems [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 235-241. |
[6] | SUN Long, DOU Xu, HU Tongxin. Research progress on the effects of forest fire on forest ecosystem C-N-P ecological stoichiometry characteristics [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(2): 1-9. |
[7] | CHEN Jiaxin,YANG Hongqiang. Advances and frontiers in global forest and harvested wood products carbon science [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(04): 1-8. |
[8] | LIU Zebin, CHENG Ruimei, XIAO Wenfa, WANG Na. Stoichiometric characteristics of leaf carbon, nitrogen and phosphorus in forest ecosystems in the head of the Three Gorges Reservoir Area [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(02): 27-33. |
[9] | WANG Heng,LI Mingshi. A review of the major impacts of climate change on forest ecosystems [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(06): 167-173. |
[10] | XIU Zhenzhen, WANG Bin, YANG Xiaosheng, YU Chao, ZHANG Long, GERI le Tu. Assessment on forest ecosystem services in Miaoshanwu Nature Reserve of Zhejiang Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2015, 39(04): 81-87. |
[11] | LU Qiuling, WANG Guobing, YANG Ping, ZHENG Abao, RUAN Honghua*. A review on the estimation methods of carbon pools of forest ecosystems [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2012, 36(05): 155-160. |
[12] | LI Ping, WANG Guobing, ZHENG Abao, SHEN Yujuan, ZHAO Qiqi, WANG Linfei, JIANG Rusheng, LI Li, RUAN Honghua. The variations of soil labile organic carbon in four plantations in south of Jiangsu province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2012, 36(04): 79-83. |
[13] | ZHANG Jun. The biomass dynamic analysis of public walfare forest inXianju county of Zhejiang province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2011, 35(05): 147-150. |
[14] | WANG Shaojun, RUAN Honghua . Review on carbon cycle of forestry ecosystem and its management under the global changes [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2011, 35(02): 113-116. |
[15] | ZEN Qunying, ZHOU Yuanman, LI Jiping, LUO Liping, LIU Suqing*. Study on the means of regionalization and organization for forest ecosystem management in Huangfengqiao forest farm [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2010, 34(04): 102-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||