
A review on the temperature sensitivity of soil organic carbon decomposition in terrestrial ecosystem
ZHU Zhu, XU Xia, YANG Sailan, PENG Fanxi, ZHANG Huiguang, CAI Bin
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (1) : 33-39.
A review on the temperature sensitivity of soil organic carbon decomposition in terrestrial ecosystem
The importance of the decomposition of soil organic carbon (SOC) and its temperature sensitivity (Q10) in terrestrial ecosystem carbon (C) cycling have been widely recognized, especially under climate change. A small change in the Q10 of SOC decomposition may result in a large effect on the global C cycle. Therefore, the identification of critical driving factors of Q10 is needed for accurately predicting soil CO2 efflux and its feedback to climate change under a continuously warming scenario. By reviewing the published literatures, we explored how different incubation approaches, substrate quality, physicochemical protection and microbial properties affect Q10. We found that: (1) Varying temperature incubation largely overcomes the issues of substrate depletion and microbial adaption that occur using constant temperature incubation, and provides a more accurate and rapid estimation of Q10. (2) While the results of some studies have shown that the Q10 value of recalcitrant C is higher than that of labile organic C, others have also found that the Q10 of recalcitrant C is not necessarily higher than that of labile C, which is mainly due to the heterogeneity of SOC pool. (3) The protection of soil aggregates and minerals on organic matter can affect Q10 by changing the substrate availability or concentration at reaction microsites. (4) Physiological characteristics and community composition and structure of microorganisms also influence the Q10. Microbial communities and physiological characteristics in warmed soils possess a varying relative abundance of key functional genes involved in the degradation of SOC. the SOC decomposition and its Q10 are the essential aspects of the global C cycle. A better understanding of Q10 could contribute to the development of the global change models and accurate projection of future climate.
soil organic carbon decomposition / temperature sensitivity / incubation approaches / substrate quality / physicochemical protection / microbial property
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
滕泽宇, 陈智文, 白震, 等. 恒、变温培养模式对土壤呼吸温度敏感性影响之异同[J]. 土壤通报, 2016, 47(1):47-53.
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
何念鹏, 刘远, 徐丽, 等. 土壤有机质分解的温度敏感性:培养与测定模式[J]. 生态学报, 2018, 38(11):4045-4051.
|
[34] |
刘颖, 韩士杰, 胡艳玲, 等. 土壤温度和湿度对长白松林土壤呼吸速率的影响[J]. 应用生态学报, 2005, 16(9):1581-1585.
|
[35] |
刘颖, 韩士杰. 长白山四种森林土壤呼吸的影响因素[J]. 生态环境学报, 2009, 18(3):1061-1065.
|
[36] |
王淼, 姬兰柱, 李秋荣, 等. 土壤温度和水分对长白山不同森林类型土壤呼吸的影响[J]. 应用生态学报, 2003, 14(8):1234-1238.
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
周学雅, 陈志杰, 耿世聪, 等. 氮沉降对长白山森林土壤团聚体内碳、氮含量的影响[J]. 应用生态学报, 2019, 30(5):1543-1552.
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
范分良, 黄平容, 唐勇军, 等. 微生物群落对土壤微生物呼吸速率及其温度敏感性的影响[J]. 环境科学, 2012, 33(3):932-937.
|
[80] |
|
[81] |
|
[82] |
|
[83] |
曹子铖, 程淑兰, 方华军, 等. 温带针阔叶林土壤有机碳动态和微生物群落结构对有机氮添加的响应特征[J]. 土壤学报, 2020, 57(4):963-974.
|
[84] |
|
[85] |
|
/
〈 |
|
〉 |