JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (5): 235-241.doi: 10.12302/j.issn.1000-2006.202003006
Previous Articles Next Articles
GUO Liang(), DING Jiuming, XU Xia*()
Received:
2020-03-03
Accepted:
2021-02-25
Online:
2021-09-30
Published:
2021-09-30
Contact:
XU Xia
E-mail:lguo1992@163.com;xuxia.1982@yahoo.com
CLC Number:
GUO Liang, DING Jiuming, XU Xia. Advances in research on methane from tree stems[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 235-241.
Table 1
Methane flux from tree trunks in different ecosystems"
森林类型 forest type | 植物群落 plant community | 地理位置 geographical position | 树干测量 位置/cm emission surface | 通量/ (μmol·m-2·h-1) flux | 文献 Reference |
---|---|---|---|---|---|
亚热带红树林 | 秋茄 Kandelia obovata | 23°53'N, 117°30'E | 20~50 | (0.71±0.24)~(91.19 ±16.63) | [38] |
温带落叶林 | 水曲柳 Fraxinus mandshurica | 43°22'N, 141°36'E | 15 15 70 | 5.06~81.56 11.00 6.06 | [41] [42] |
温带落叶林 | 北美鹅掌楸 Liriodendron tulipifera等 | 38°51'N, 78°32'W | 30~60 | (4.3±0.81) ~(35.49±10.91) 1.59±0.88 | [20,22] |
温带落叶林 | 欧洲桤木 Alnus glutinosa | 52°0'N, 0°28'W | 20~50 | (6.71±0.83)~ (9.79 ±1.29) | [33] |
热带雨林 | 8种被子植物 | 2°20'S, 113°55'E | 20~130 | (1.06±0.9)~(11.56 ±0.44) | [13] |
热带雨林 | 多种被子植物 | 2°20'S~3°20'S, 54°55'~61°0'E | 15~140 | (1.00±2.50)~(16 937.50± 6 812.50) | [12] |
温带落叶林 | 北美鹅掌楸 L. tulipifera等 | 39°42'N, 75°50'W | 130 | 0.40±0.18 | [43] |
暖温带森林 | 山杨 Populus davidiana等 | 39°58'N, 115°26'E | 130 | 12.63~20.73, 5.33~6.44 | [11,19] |
温带森林 | 欧洲水青冈 Fagus sylvatica | 48°1'N,7°57'E | 120 | 1.87±3.31 | [23] |
寒温带森林 | 欧洲赤松 Pinus sylvestris | 61°51'N, 24°17'E | 20 | 0.000 31~0.006 3 | [21] |
温带森林 | 欧洲桤木 Alnus glutinosa | 52°00'N, 00°28'W | 30 | 0.26~6.31 | [10] |
温带森林 | 苦味山核桃 Carya cordiformis | 39°5'N, 75°26'W | 75 150 | 0.46±0.03 0.28±0.02 | [44] |
温带森林 | 无梗花栎 Quercus petraea | 48°29'N, 6°41'E | 25~45 | 0.032±0.022 | [45] |
亚热带森林 | 落羽杉 Taxodium distichum | 32°08'N, 81°25'W | <30, >300 | 2.34±0.78 | [46] |
热带红树林 | 白骨壤 Avicenna marina | 17°27'S, 140°48'E | 10~170 | 0.013~ 21.00, -3.77 ~168.15(死亡株) | [47] |
温带森林湿地 | 多种被子植物(死亡株) | 35°54'N, 76°09'W | 10-100 | 吸收-37.5±18.75,25.0±6.25 | [48] |
[1] | IPCC. Global warming of 1.5 ℃[R/OL]. Cambridge: Cambridge University Press, 2018.https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf. |
[2] |
HOEGH-GULDBERG O, JACOB D, TAYLOR M, et al. The human imperative of stabilizing global climate change at 1.5 degrees C[J]. Science, 2019, 365(6459):eaaw6974. DOI: 10.1126/science.aaw6974.
doi: 10.1126/science.aaw6974 |
[3] | IPCC. Climate change 2013-the physical science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change[R/OL]. Cambridge: Cambridge University Press, 2014. https://www.cambridge.org/core/books. |
[4] |
WU J, LI Q, CHEN J W, et al. Afforestation enhanced soil CH4 uptake rate in subtropical China: evidence from carbon stable isotope experiments[J]. Soil Biology and Biochemistry, 2018, 118:199-206. DOI: 10.1016/j.soilbio.2017.12.017.
doi: 10.1016/j.soilbio.2017.12.017 |
[5] |
FLETCHER S E M, SCHAEFER H. Rising methane: a new climate challenge[J]. Science, 2019, 364(6444):932-933. DOI: 10.1126/science.aax1828.
doi: 10.1126/science.aax1828 |
[6] | 何姗, 刘娟, 姜培坤, 等. 全球变化对森林土壤甲烷吸收的影响及其机制研究进展[J]. 应用生态学报, 2019, 30(2):677-684. |
HE S, LIU J, JIANG P K, et al. Effects of global change on methane uptake in forest soils and its mechanisms:a review[J]. Chin J Appl Ecol, 2019, 30(2):677-684.DOI: 10.13287/j.1001-9332.201902.028.
doi: 10.13287/j.1001-9332.201902.028 |
|
[7] |
LE MER J, ROGER A P. Production, oxidation, emission and consumption of methane by soils: a review[J]. European Journal of Soil Biology, 2001, 37(1):25-50. DOI: 10.1016/S1164-5563(01)01067-6.
doi: 10.1016/S1164-5563(01)01067-6 |
[8] |
ALLEN G. Biogeochemistry: rebalancing the global methane budget[J]. Nature, 2016, 538(7623):46-48. DOI: 10.1038/538046a.
doi: 10.1038/538046a |
[9] |
SAUNOIS M, BOUSQUET P, POULTER B, et al. Variability and quasi-decadal changes in the methane budget over the period 2000-2012[J]. Atmospheric Chemistry and Physics, 2017, 17(18):11135-11161. DOI: 10.5194/acp-17-11135-2017.
doi: 10.5194/acp-17-11135-2017 |
[10] |
GAUCI V, GOWING D J G, HORNIBROOK E R C, et al. Woody stem methane emission in mature wetland alder trees[J]. Atmospheric Environment, 2010, 44(17):2157-2160. DOI: 10.1016/j.atmosenv.2010.02.034.
doi: 10.1016/j.atmosenv.2010.02.034 |
[11] |
WANG Z P, HAN S J, LI H L, et al. Methane production explained largely by water content in the heartwood of living trees in upland forests[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(10):2479-2489. DOI: 10.1002/2017JG003991.
doi: 10.1002/2017JG003991 |
[12] |
PANGALA S R, ENRICH-PRAST A, BASSO L S, et al. Large emissions from floodplain trees close the Amazon methane budget[J]. Nature, 2017, 552(7684):230-234. DOI: 10.1038/nature24639.
doi: 10.1038/nature24639 |
[13] |
PANGALA S R, MOORE S, HORNIBROOK E R, et al. Trees are major conduits for methane egress from tropical forested wetlands[J]. New Phytologist, 2013, 197:524-531. DOI: 10.1111/nph.12031.
doi: 10.1111/nph.12031 |
[14] |
FENG H L, GUO J H, HAN M H, et al. A review of the mechanisms and controlling factors of methane dynamics in forest ecosystems[J]. Forest Ecology and Management, 2020, 455:117702. DOI: 10.1016/j.foreco.2019.117702.
doi: 10.1016/j.foreco.2019.117702 |
[15] |
ZHANG T, ZHU W, MO J, et al. Increased phosphorus availability mitigates the inhibition of nitrogen deposition on CH4 uptake in an old-growth tropical forest, southern China[J]. Biogeosciences, 2011, 8(9):2805-2813. DOI: 10.5194/bg-8-2805-2011.
doi: 10.5194/bg-8-2805-2011 |
[16] |
CARMICHAEL M J, BERNHARDT E S, BRÄUER S L, et al. The role of vegetation in methane flux to the atmosphere: should vegetation be included as a distinct category in the global methane budget?[J]. Biogeochemistry, 2014, 119(1/3):1-24. DOI: 10.1007/s10533-014-9974-1.
doi: 10.1007/s10533-014-9974-1 |
[17] |
BRUHN D, MOLLER I M, MIKKELSEN T N, et al. Terrestrial plant methane production and emission[J]. Physiol Plant, 2012, 144(3):201-209. DOI: 10.1111/j.1399-3054.2011.01551.x.
doi: 10.1111/j.1399-3054.2011.01551.x |
[18] |
COVEY K R, MEGONIGAL J P. Methane production and emissions in trees and forests[J]. New Phytol, 2019, 22(1):35-51. DOI: 10.1111/nph.15624.
doi: 10.1111/nph.15624 |
[19] |
WANG Z P, GU Q, DENG F D, et al. Methane emissions from the trunks of living trees on upland soils[J]. New Phytol, 2016, 211(2):429-439. DOI: 10.1111/nph.13909.
doi: 10.1111/nph.13909 |
[20] |
PITZ S L, MEGONIGAL J P, CHANG C H, et al. Methane fluxes from tree stems and soils along a habitat gradient[J]. Biogeochemistry, 2018, 137(3):307-320. DOI: 10.1007/s10533-017-0400-3.
doi: 10.1007/s10533-017-0400-3 |
[21] |
MACHACOVA K, BACK J, VANHATALO A, et al. Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest[J]. Sci Rep, 2016, 6:23410. DOI: 10.1038/srep23410.
doi: 10.1038/srep23410 |
[22] |
PITZ S, MEGONIGAL J P. Temperate forest methane sink diminished by tree emissions[J]. New Phytol, 2017, 214(4):1432-1439. DOI: 10.1111/nph.14559.
doi: 10.1111/nph.14559 |
[23] |
MAIER M, MACHACOVA K, LANG F, et al. Combining soil and tree-stem flux measurements and soil gas profiles to understand CH4 pathways in Fagus sylvatica forests[J]. J Plant Nutr Soil Sci, 2018, 181(1):31-35. DOI: 10.1002/jpln.201600405.
doi: 10.1002/jpln.201600405 |
[24] |
YIP D Z, VEACH A M, YANG Z K, et al. Methanogenic archaea dominate mature heartwood habitats of eastern Cottonwood (Populus deltoides)[J]. New Phytologist, 2018, 222(1):115-121. DOI: 10.1111/nph.15346.
doi: 10.1111/nph.15346 |
[25] |
BARBA J, BRADFORD M A, BREWER P E, et al. Methane emissions from tree stems: a new frontier in the global carbon cycle[J]. New Phytol, 2018, 2019(222):18-28. DOI: 10.1111/nph.15582.
doi: 10.1111/nph.15582 |
[26] |
SCHINK B, WARD J C. Microaerobic and anaerobic bacterial activities involved in formation of wetwood and discoloured wood[J]. International Association of Wood Anatomist Bulletin, 1984, 5(5):105-109. DOI: 10.1163/22941932-90000872.
doi: 10.1163/22941932-90000872 |
[27] |
COVEY K R, WOOD S R, WARREN R J, et al. Elevated methane concentrations in trees of an upland forest[J]. Geophy Resea Lett, 2012, 39(15):L15705. DOI: 10.1029/2012gl052361.
doi: 10.1029/2012gl052361 |
[28] |
GARTNER B L, MOORE J R, GARDINER B A. Gas in stems: abundance and potential consequences for tree biomechanics[J]. Tree Physiology, 2004, 24(11):1239-1250. DOI: 10.1093/treephys/24.11.1239
doi: 10.1093/treephys/24.11.1239 |
[29] |
DREW M C, HE C J, MORGAN P W. Programmed cell death and aerenchyma formation in roots[J]. Trends Plant Sci, 2000, 5(3):123-127. DOI: 10.1016/S1360-1385(00)01570-3.
doi: 10.1016/S1360-1385(00)01570-3 |
[30] |
EVANS D E. Aerenchyma formation[J]. New Phytologist, 2004, 161(1):35-49. DOI: 10.1046/j.1469-8137.2003.00907.x.
doi: 10.1046/j.1469-8137.2003.00907.x |
[31] |
JACKSON M, ARMSTRONG W. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence[J]. Plant Biology, 1999, 1(3):274-287. DOI: 10.1111/j.1438-8677.1999.t600253x.
doi: 10.1111/j.1438-8677.1999.t600253x |
[32] |
RICE A L, BUTENHOFF C L, SHEARER M J, et al. Emissions of anaerobically produced methane by trees[J]. Geophy Resea Lett, 2010, 37(3):L03807. DOI: 10.1029/2009gl041565.
doi: 10.1029/2009gl041565 |
[33] |
PANGALA S R, HORNIBROOK E R C, GOWING D J, et al. The contribution of trees to ecosystem methane emissions in a temperate forested wetland[J]. Global Change Biology, 2015, 21(7):2642-2654. DOI: 10.1111/gcb.12891.
doi: 10.1111/gcb.12891 |
[34] |
ARMSTRONG W. Aeration in higher plants[J]. Advances in botanical research, 1980, 7:225-332. DOI: 10.1016/s0065-2296(08)60089-0.
doi: 10.1016/s0065-2296(08)60089-0 |
[35] |
MEGONIGAL J P, GUENTHER A B. Methane emissions from upland forest soils and vegetation[J]. Tree Physiology, 2008, 28(4):491-498. DOI: 10.1093/treephys/28.4.491.
doi: 10.1093/treephys/28.4.491 |
[36] |
IKEDA S, KANEKO T, OKUBO T, et al. Development of a bacterial cell enrichment method and its application to the community analysis in soybean stems[J]. Microb Ecol, 2009, 58(4):703-714. DOI: 10.1007/s00248-009-9566-0.
doi: 10.1007/s00248-009-9566-0 |
[37] |
CONRAD R. Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal[J]. Organic Geochemistry, 2005, 36(5):739-752. DOI: 10.1016/j.orggeochem.2004.09.006.
doi: 10.1016/j.orggeochem.2004.09.006 |
[38] | 张雨雪, 黄佳芳, 罗敏, 等. 漳江口不同潮滩秋茄树干CH4传输速率与呼吸速率[J]. 环境科学研究, 2019, 32(5):840-847. |
ZHANG Y X, HUANG J F, LUO M, et al. Rate of methane transport and respiration from the stem of mangrove Kandelia obovata at different part of intertidal zone in Zhangjiang River estuary[J]. Research of Environmental Sciences, 2019, 32(5):840-847. DOI: 10.13198/j.issn.1001-6929.2018.09.14.
doi: 10.13198/j.issn.1001-6929.2018.09.14 |
|
[39] |
WELCH B, GAUCI V, SAYER E J. Tree stem bases are sources of CH4 and N2O in a tropical forest on upland soil during the dry to wet season transition[J]. Glob Change Biol, 2019, 25(1):361-372. DOI: 10.1111/gcb.14498.
doi: 10.1111/gcb.14498 |
[40] |
SIEGENTHALER A, WELCH B, PANGALA S R, et al. Technical note: semi-rigid chambers for methane gas flux measurements on tree stems[J]. Biogeosciences, 2016, 13(4):1197-1207. DOI: 10.5194/bg-13-1197-2016.
doi: 10.5194/bg-13-1197-2016 |
[41] |
TERAZAWA K, YAMADA K, OHNO Y, et al. Spatial and temporal variability in methane emissions from tree stems of Fraxinus mandshurica in a cool-temperate floodplain forest[J]. Biogeochemistry, 2015, 123(3):349-362. DOI: 10.1007/s10533-015-0070-y.
doi: 10.1007/s10533-015-0070-y |
[42] |
TERAZAWA K, ISHIZUKA S, SAKATA T, et al. Methane emissions from stems of Fraxinus mandshurica var. japonica trees in a floodplain forest[J]. Soil Biology and Biochemistry, 2007, 39(10):2689-2692. DOI: 10.1016/j.soilbio.2007.05.013.
doi: 10.1016/j.soilbio.2007.05.013 |
[43] |
WARNER D L, VILLARREAL S, MCWILLIAMS K, et al. Carbon dioxide and methane fluxes from tree stems, coarse woody debris, and soils in an upland temperate forest[J]. Ecosystems, 2017, 20(6):1205-1216. DOI: 10.1007/s10021-016-0106-8.
doi: 10.1007/s10021-016-0106-8 |
[44] |
BARBA J, POYATOS R, VARGAS R. Automated measurements of greenhouse gases fluxes from tree stems and soils: magnitudes, patterns and drivers[J]. Sci Rep, 2019, 9(1):4005. DOI: 10.1038/s41598-019-39663-8.
doi: 10.1038/s41598-019-39663-8 |
[45] |
PLAIN C, NDIAYE F K, BONNAUD P, et al. Impact of vegetation on the methane budget of a temperate forest[J]. New Phytol, 2019, 221(3):1447-1456. DOI: 10.1111/nph.15452.
doi: 10.1111/nph.15452 |
[46] |
PULLIAM W. Methane emissions from cypress knees in a southeastern floodplain swamp[J]. Oecologia, 1992, 91(1):126-128. DOI: 10.1007/BF00317250.
doi: 10.1007/BF00317250 |
[47] |
JEFFREY L C, REITHMAIER G, SIPPO J Z, et al. Are methane emissions from mangrove stems a cryptic carbon loss pathway? Insights from a catastrophic forest mortality[J]. New Phytol, 2019, 224(1):146-154 DOI: 10.1111/nph.15995.
doi: 10.1111/nph.15995 |
[48] |
ZUCCARINI P, ASENSIO D, OGAYA R, et al. Effects of seasonal and decadal warming on soil enzymatic activity in a P-deficient Mediterranean shrubland[J]. Glob Change Biol, 2020, 26(6):3968-3714. DOI: 10.1111/gcb.15077.
doi: 10.1111/gcb.15077 |
[49] |
KALACHANIS D, PSARAS G K, Structural changes in primary lenticels of Olea europaea and Cercis siliquastrum during the year[J]. IAWA Journal, 2007, 28(4):445-456. DOI: 10.1163/22941932-90001654.
doi: 10.1163/22941932-90001654 |
[50] |
PANGALA S R, GOWING D J, HORNIBROOK E R C, et al. Controls on methane emissions from Alnus glutinosa saplings[J]. New Phytol, 2014, 201(3):887-896. DOI: 10.1111/nph.12561.
doi: 10.1111/nph.12561 |
[51] |
CONRAD R, KLOSE M. Anaerobic conversion of carbon dioxide to methane, acetate and propionate on washed rice roots[J]. FEMS Microbiology Ecology, 1999, 30(2):147-155. DOI: 10.1016/S0168-6496(99)00048-3.
doi: 10.1016/S0168-6496(99)00048-3 |
[52] |
OBERLE B, COVEY K R, DUNHAM K M, et al. Dissecting the effects of diameter on wood decay emphasizes the importance of cross-stem conductivity in Fraxinus americana[J]. Ecosystems, 2018, 21(1):85-97. DOI: 10.1007/s10021-017-0136-x.
doi: 10.1007/s10021-017-0136-x |
[53] |
GARNET K N, MEGONIGAL J P, LITCHFIEL D C, et al. Physiological control of leaf methane emission from wetland plants[J]. Aquatic Botany, 2005, 81(2):141-155. DOI: 10.1016/j.aquabot.2004.10.003.
doi: 10.1016/j.aquabot.2004.10.003 |
[54] |
MEGONIGAL J P, PATRICK W H Jr, FAULKNER S P. Wetland identification in seasonally flooded forest soils: soil morphology and redox dynamics[J]. Soil Science Society of America Journal, 1993, 57(1):140-149. DOI: 10.2136/sssaj1993.03615995005700010027x.
doi: 10.2136/sssaj1993.03615995005700010027x |
[55] |
TOPP E, PATTEY E. Soils as sources and sinks for atmospheric methane[J]. Canadian Journal of Soil Science, 1997, 77(2):167-177. DOI: 10.4141/S96-107.
doi: 10.4141/S96-107 |
[56] |
KIRSCHKE S, BOUSQUET P, CIAIS P, et al. Three decades of global methane sources and sinks[J]. Nature Geoscience, 2013, 6(10):813-823. DOI: 10.1038/ngeo1955.
doi: 10.1038/ngeo1955 |
[57] |
KEPPLER F, HAMILTON J T, BRASS M, et al. Methane emissions from terrestrial plants under aerobic conditions[J]. Nature, 2006, 439(7073):187-191. DOI: 10.1038/nature04420.
doi: 10.1038/nature04420 |
[58] |
SAUNOIS M, BOUSQUET P, POULTER B, et al. The global methane budget 2000-2012[J]. Earth System Science Data, 2016, 8(2):697-751. DOI: 10.5194/essd-8-697-2016.
doi: 10.5194/essd-8-697-2016 |
[1] | LIN Jie, ZHANG Xiang, JIANG Jiang, KUAI Jie, GUO Geng, MENG Miaojing, LI Xiao. A review on the soil organic carbon cycling under water erosion [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 187-194. |
[2] | HUANG Zijing, XU Xia, ZHANG Huiguang, CAI Bin, LI Liangbin. Advances in effects of root input on forest soil carbon pool and carbon cycle [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(1): 25-32. |
[3] | CHEN Jiaxin,YANG Hongqiang. Advances and frontiers in global forest and harvested wood products carbon science [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(04): 1-8. |
[4] | LI Ping, WANG Guobing, ZHENG Abao, SHEN Yujuan, ZHAO Qiqi, WANG Linfei, JIANG Rusheng, LI Li, RUAN Honghua. The variations of soil labile organic carbon in four plantations in south of Jiangsu province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2012, 36(04): 79-83. |
[5] | WANG Shaojun, RUAN Honghua . Review on carbon cycle of forestry ecosystem and its management under the global changes [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2011, 35(02): 113-116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||