Advances in research on methane from tree stems

GUO Liang, DING Jiuming, XU Xia

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (5) : 235-241.

PDF(2117 KB)
PDF(2117 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (5) : 235-241. DOI: 10.12302/j.issn.1000-2006.202003006

Advances in research on methane from tree stems

Author information +
History +

Abstract

Methane (CH4) as the second most important greenhouse gas in terrestrial ecosystems after carbon dioxide (CO2) has received extensive attention in the context of global warming. With the same quantity (number of moles) of greenhouse gas, the greenhouse effect of CH4 in 100 years is 28 to 34 times that of CO2, and atmospheric CH4 is responsible for approximately 20% to 30% of global warming. Reports of a discrepancy between emissions-based estimates and satellite-based estimates of CH4 sources in tropical forests have generated interest in tree surfaces as a neglected source. Numerous studies in recent years have also proved that trees are an important source and sink of forest CH4 budget. By review in published literatures, this paper comprehensively analyzed the source, flux size, influencing factors of CH4 in tree stems and its impact on terrestrial carbon budget. We found that: ① CH4 released by the stems was produced in the soil or in the heartwood of the tree, and then diffused through the stems into the air.② The flux range of stems CH4 was from(-37.5±18.75) to (16 937.50±6 812.50) μmol/(m2·h).③ The CH4 flux on the surface of the stems had a large spatiotemporal difference, which mainly comes from the species, age, tissue type, site characteristics and environmental conditions. ④ The CH4 released from forest wetland (or woody swamp) might be underestimated, while the CH4 absorption from dryland or alpine forests might be overestimated, without considering the CH4 flux from the stems. As a new member of the terrestrial carbon cycle, tree-stems methane should be given sufficient attention, which was of great significance for predicting future global climate change.

Key words

stems methane / greenhouse gases / carbon cycle / terrestrial ecosystem

Cite this article

Download Citations
GUO Liang , DING Jiuming , XU Xia. Advances in research on methane from tree stems[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(5): 235-241 https://doi.org/10.12302/j.issn.1000-2006.202003006

References

[1]
IPCC. Global warming of 1.5 ℃[R/OL]. Cambridge: Cambridge University Press, 2018.https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf.
[2]
HOEGH-GULDBERG O, JACOB D, TAYLOR M, et al. The human imperative of stabilizing global climate change at 1.5 degrees C[J]. Science, 2019, 365(6459):eaaw6974. DOI: 10.1126/science.aaw6974.
[3]
IPCC. Climate change 2013-the physical science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change[R/OL]. Cambridge: Cambridge University Press, 2014. https://www.cambridge.org/core/books.
[4]
WU J, LI Q, CHEN J W, et al. Afforestation enhanced soil CH4 uptake rate in subtropical China: evidence from carbon stable isotope experiments[J]. Soil Biology and Biochemistry, 2018, 118:199-206. DOI: 10.1016/j.soilbio.2017.12.017.
[5]
FLETCHER S E M, SCHAEFER H. Rising methane: a new climate challenge[J]. Science, 2019, 364(6444):932-933. DOI: 10.1126/science.aax1828.
[6]
何姗, 刘娟, 姜培坤, 等. 全球变化对森林土壤甲烷吸收的影响及其机制研究进展[J]. 应用生态学报, 2019, 30(2):677-684.
HE S, LIU J, JIANG P K, et al. Effects of global change on methane uptake in forest soils and its mechanisms:a review[J]. Chin J Appl Ecol, 2019, 30(2):677-684.DOI: 10.13287/j.1001-9332.201902.028.
[7]
LE MER J, ROGER A P. Production, oxidation, emission and consumption of methane by soils: a review[J]. European Journal of Soil Biology, 2001, 37(1):25-50. DOI: 10.1016/S1164-5563(01)01067-6.
[8]
ALLEN G. Biogeochemistry: rebalancing the global methane budget[J]. Nature, 2016, 538(7623):46-48. DOI: 10.1038/538046a.
[9]
SAUNOIS M, BOUSQUET P, POULTER B, et al. Variability and quasi-decadal changes in the methane budget over the period 2000-2012[J]. Atmospheric Chemistry and Physics, 2017, 17(18):11135-11161. DOI: 10.5194/acp-17-11135-2017.
[10]
GAUCI V, GOWING D J G, HORNIBROOK E R C, et al. Woody stem methane emission in mature wetland alder trees[J]. Atmospheric Environment, 2010, 44(17):2157-2160. DOI: 10.1016/j.atmosenv.2010.02.034.
[11]
WANG Z P, HAN S J, LI H L, et al. Methane production explained largely by water content in the heartwood of living trees in upland forests[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(10):2479-2489. DOI: 10.1002/2017JG003991.
[12]
PANGALA S R, ENRICH-PRAST A, BASSO L S, et al. Large emissions from floodplain trees close the Amazon methane budget[J]. Nature, 2017, 552(7684):230-234. DOI: 10.1038/nature24639.
[13]
PANGALA S R, MOORE S, HORNIBROOK E R, et al. Trees are major conduits for methane egress from tropical forested wetlands[J]. New Phytologist, 2013, 197:524-531. DOI: 10.1111/nph.12031.
[14]
FENG H L, GUO J H, HAN M H, et al. A review of the mechanisms and controlling factors of methane dynamics in forest ecosystems[J]. Forest Ecology and Management, 2020, 455:117702. DOI: 10.1016/j.foreco.2019.117702.
[15]
ZHANG T, ZHU W, MO J, et al. Increased phosphorus availability mitigates the inhibition of nitrogen deposition on CH4 uptake in an old-growth tropical forest, southern China[J]. Biogeosciences, 2011, 8(9):2805-2813. DOI: 10.5194/bg-8-2805-2011.
[16]
CARMICHAEL M J, BERNHARDT E S, BRÄUER S L, et al. The role of vegetation in methane flux to the atmosphere: should vegetation be included as a distinct category in the global methane budget?[J]. Biogeochemistry, 2014, 119(1/3):1-24. DOI: 10.1007/s10533-014-9974-1.
[17]
BRUHN D, MOLLER I M, MIKKELSEN T N, et al. Terrestrial plant methane production and emission[J]. Physiol Plant, 2012, 144(3):201-209. DOI: 10.1111/j.1399-3054.2011.01551.x.
[18]
COVEY K R, MEGONIGAL J P. Methane production and emissions in trees and forests[J]. New Phytol, 2019, 22(1):35-51. DOI: 10.1111/nph.15624.
[19]
WANG Z P, GU Q, DENG F D, et al. Methane emissions from the trunks of living trees on upland soils[J]. New Phytol, 2016, 211(2):429-439. DOI: 10.1111/nph.13909.
[20]
PITZ S L, MEGONIGAL J P, CHANG C H, et al. Methane fluxes from tree stems and soils along a habitat gradient[J]. Biogeochemistry, 2018, 137(3):307-320. DOI: 10.1007/s10533-017-0400-3.
[21]
MACHACOVA K, BACK J, VANHATALO A, et al. Pinus sylvestris as a missing source of nitrous oxide and methane in boreal forest[J]. Sci Rep, 2016, 6:23410. DOI: 10.1038/srep23410.
[22]
PITZ S, MEGONIGAL J P. Temperate forest methane sink diminished by tree emissions[J]. New Phytol, 2017, 214(4):1432-1439. DOI: 10.1111/nph.14559.
[23]
MAIER M, MACHACOVA K, LANG F, et al. Combining soil and tree-stem flux measurements and soil gas profiles to understand CH4 pathways in Fagus sylvatica forests[J]. J Plant Nutr Soil Sci, 2018, 181(1):31-35. DOI: 10.1002/jpln.201600405.
[24]
YIP D Z, VEACH A M, YANG Z K, et al. Methanogenic archaea dominate mature heartwood habitats of eastern Cottonwood (Populus deltoides)[J]. New Phytologist, 2018, 222(1):115-121. DOI: 10.1111/nph.15346.
[25]
BARBA J, BRADFORD M A, BREWER P E, et al. Methane emissions from tree stems: a new frontier in the global carbon cycle[J]. New Phytol, 2018, 2019(222):18-28. DOI: 10.1111/nph.15582.
[26]
SCHINK B, WARD J C. Microaerobic and anaerobic bacterial activities involved in formation of wetwood and discoloured wood[J]. International Association of Wood Anatomist Bulletin, 1984, 5(5):105-109. DOI: 10.1163/22941932-90000872.
[27]
COVEY K R, WOOD S R, WARREN R J, et al. Elevated methane concentrations in trees of an upland forest[J]. Geophy Resea Lett, 2012, 39(15):L15705. DOI: 10.1029/2012gl052361.
[28]
GARTNER B L, MOORE J R, GARDINER B A. Gas in stems: abundance and potential consequences for tree biomechanics[J]. Tree Physiology, 2004, 24(11):1239-1250. DOI: 10.1093/treephys/24.11.1239
[29]
DREW M C, HE C J, MORGAN P W. Programmed cell death and aerenchyma formation in roots[J]. Trends Plant Sci, 2000, 5(3):123-127. DOI: 10.1016/S1360-1385(00)01570-3.
[30]
EVANS D E. Aerenchyma formation[J]. New Phytologist, 2004, 161(1):35-49. DOI: 10.1046/j.1469-8137.2003.00907.x.
[31]
JACKSON M, ARMSTRONG W. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence[J]. Plant Biology, 1999, 1(3):274-287. DOI: 10.1111/j.1438-8677.1999.t600253x.
[32]
RICE A L, BUTENHOFF C L, SHEARER M J, et al. Emissions of anaerobically produced methane by trees[J]. Geophy Resea Lett, 2010, 37(3):L03807. DOI: 10.1029/2009gl041565.
[33]
PANGALA S R, HORNIBROOK E R C, GOWING D J, et al. The contribution of trees to ecosystem methane emissions in a temperate forested wetland[J]. Global Change Biology, 2015, 21(7):2642-2654. DOI: 10.1111/gcb.12891.
[34]
ARMSTRONG W. Aeration in higher plants[J]. Advances in botanical research, 1980, 7:225-332. DOI: 10.1016/s0065-2296(08)60089-0.
[35]
MEGONIGAL J P, GUENTHER A B. Methane emissions from upland forest soils and vegetation[J]. Tree Physiology, 2008, 28(4):491-498. DOI: 10.1093/treephys/28.4.491.
[36]
IKEDA S, KANEKO T, OKUBO T, et al. Development of a bacterial cell enrichment method and its application to the community analysis in soybean stems[J]. Microb Ecol, 2009, 58(4):703-714. DOI: 10.1007/s00248-009-9566-0.
[37]
CONRAD R. Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal[J]. Organic Geochemistry, 2005, 36(5):739-752. DOI: 10.1016/j.orggeochem.2004.09.006.
[38]
张雨雪, 黄佳芳, 罗敏, 等. 漳江口不同潮滩秋茄树干CH4传输速率与呼吸速率[J]. 环境科学研究, 2019, 32(5):840-847.
ZHANG Y X, HUANG J F, LUO M, et al. Rate of methane transport and respiration from the stem of mangrove Kandelia obovata at different part of intertidal zone in Zhangjiang River estuary[J]. Research of Environmental Sciences, 2019, 32(5):840-847. DOI: 10.13198/j.issn.1001-6929.2018.09.14.
[39]
WELCH B, GAUCI V, SAYER E J. Tree stem bases are sources of CH4 and N2O in a tropical forest on upland soil during the dry to wet season transition[J]. Glob Change Biol, 2019, 25(1):361-372. DOI: 10.1111/gcb.14498.
[40]
SIEGENTHALER A, WELCH B, PANGALA S R, et al. Technical note: semi-rigid chambers for methane gas flux measurements on tree stems[J]. Biogeosciences, 2016, 13(4):1197-1207. DOI: 10.5194/bg-13-1197-2016.
[41]
TERAZAWA K, YAMADA K, OHNO Y, et al. Spatial and temporal variability in methane emissions from tree stems of Fraxinus mandshurica in a cool-temperate floodplain forest[J]. Biogeochemistry, 2015, 123(3):349-362. DOI: 10.1007/s10533-015-0070-y.
[42]
TERAZAWA K, ISHIZUKA S, SAKATA T, et al. Methane emissions from stems of Fraxinus mandshurica var. japonica trees in a floodplain forest[J]. Soil Biology and Biochemistry, 2007, 39(10):2689-2692. DOI: 10.1016/j.soilbio.2007.05.013.
[43]
WARNER D L, VILLARREAL S, MCWILLIAMS K, et al. Carbon dioxide and methane fluxes from tree stems, coarse woody debris, and soils in an upland temperate forest[J]. Ecosystems, 2017, 20(6):1205-1216. DOI: 10.1007/s10021-016-0106-8.
[44]
BARBA J, POYATOS R, VARGAS R. Automated measurements of greenhouse gases fluxes from tree stems and soils: magnitudes, patterns and drivers[J]. Sci Rep, 2019, 9(1):4005. DOI: 10.1038/s41598-019-39663-8.
[45]
PLAIN C, NDIAYE F K, BONNAUD P, et al. Impact of vegetation on the methane budget of a temperate forest[J]. New Phytol, 2019, 221(3):1447-1456. DOI: 10.1111/nph.15452.
[46]
PULLIAM W. Methane emissions from cypress knees in a southeastern floodplain swamp[J]. Oecologia, 1992, 91(1):126-128. DOI: 10.1007/BF00317250.
[47]
JEFFREY L C, REITHMAIER G, SIPPO J Z, et al. Are methane emissions from mangrove stems a cryptic carbon loss pathway? Insights from a catastrophic forest mortality[J]. New Phytol, 2019, 224(1):146-154 DOI: 10.1111/nph.15995.
[48]
ZUCCARINI P, ASENSIO D, OGAYA R, et al. Effects of seasonal and decadal warming on soil enzymatic activity in a P-deficient Mediterranean shrubland[J]. Glob Change Biol, 2020, 26(6):3968-3714. DOI: 10.1111/gcb.15077.
[49]
KALACHANIS D, PSARAS G K, Structural changes in primary lenticels of Olea europaea and Cercis siliquastrum during the year[J]. IAWA Journal, 2007, 28(4):445-456. DOI: 10.1163/22941932-90001654.
[50]
PANGALA S R, GOWING D J, HORNIBROOK E R C, et al. Controls on methane emissions from Alnus glutinosa saplings[J]. New Phytol, 2014, 201(3):887-896. DOI: 10.1111/nph.12561.
[51]
CONRAD R, KLOSE M. Anaerobic conversion of carbon dioxide to methane, acetate and propionate on washed rice roots[J]. FEMS Microbiology Ecology, 1999, 30(2):147-155. DOI: 10.1016/S0168-6496(99)00048-3.
[52]
OBERLE B, COVEY K R, DUNHAM K M, et al. Dissecting the effects of diameter on wood decay emphasizes the importance of cross-stem conductivity in Fraxinus americana[J]. Ecosystems, 2018, 21(1):85-97. DOI: 10.1007/s10021-017-0136-x.
[53]
GARNET K N, MEGONIGAL J P, LITCHFIEL D C, et al. Physiological control of leaf methane emission from wetland plants[J]. Aquatic Botany, 2005, 81(2):141-155. DOI: 10.1016/j.aquabot.2004.10.003.
[54]
MEGONIGAL J P, PATRICK W H Jr, FAULKNER S P. Wetland identification in seasonally flooded forest soils: soil morphology and redox dynamics[J]. Soil Science Society of America Journal, 1993, 57(1):140-149. DOI: 10.2136/sssaj1993.03615995005700010027x.
[55]
TOPP E, PATTEY E. Soils as sources and sinks for atmospheric methane[J]. Canadian Journal of Soil Science, 1997, 77(2):167-177. DOI: 10.4141/S96-107.
[56]
KIRSCHKE S, BOUSQUET P, CIAIS P, et al. Three decades of global methane sources and sinks[J]. Nature Geoscience, 2013, 6(10):813-823. DOI: 10.1038/ngeo1955.
[57]
KEPPLER F, HAMILTON J T, BRASS M, et al. Methane emissions from terrestrial plants under aerobic conditions[J]. Nature, 2006, 439(7073):187-191. DOI: 10.1038/nature04420.
[58]
SAUNOIS M, BOUSQUET P, POULTER B, et al. The global methane budget 2000-2012[J]. Earth System Science Data, 2016, 8(2):697-751. DOI: 10.5194/essd-8-697-2016.

RIGHTS & PERMISSIONS

Copyright reserved © 2021.
PDF(2117 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/