The hydraulic characteristics of the whole branch and its components of the major tree species in the eastern region of northeast China

JING Shuo, SUN Huizhen

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (4) : 159-166.

PDF(2054 KB)
PDF(2054 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (4) : 159-166. DOI: 10.12302/j.issn.1000-2006.202003027

The hydraulic characteristics of the whole branch and its components of the major tree species in the eastern region of northeast China

Author information +
History +

Abstract

【Objective】The divergence in wood types between coniferous and broadleaved tree species is expected to lead to significantly different hydraulic architectures between these two functional groups. Despite extensive research on branch xylem, the hydraulic conductance of the whole branch and its parts between the two groups are not well understood.【Method】In the present study, the hydraulic conductance and the hydraulic relative resistance (the inverse of conductance) of the whole branch (Kwb), leafless branch (Kb), leaf blades (Klb), and petioles (KP)as well as the above values normalized by leaf area (Kwb-area, Kb-area, Klb-area) and dry mass (Kwb-mass, Kb-mass, Klb-mass), were determined in the quasi-steady-state mode using a high-pressure flow meter (HPFM). This was performed on three conifers (Pinus koraiensis, Picea koraiensis, Larix gmelinii) and four deciduous broadleaved tree species (Betula platyphylla, Acer mono, Ulmus japonica, Quercus mongolica) commonly found in the eastern region of northeast China. We analyzed the hydraulic resistance distribution of the whole branch, compared hydraulic conductance values within the same part of the branch among the different tree species, wood properties, or leaf habits, and established the relationship between the hydraulic conductance and leaf traits(leaf mass per area-LMA and leaf dry mass content-LDMC).【Result】The Klb for Pinus koraiensis was approximately four times as much as the Kwb and Kb, whereas the Klb and Kwb for the remaining six species were similar, and significantly lower than those of the Kb. The leaf-blade relative resistance (Rlb) in Pinus koraiensis accounted for 20% of the total hydraulic resistance (Rwb) in the branch, whereas the relative resistance contribution of Rlb, leafless branch (Rb), and petiole (Rp) to the Rwb ranged from 61% to 80%, about 20%, and lower than 10%, respectively, for the remaining tree species. The Klb-area of the non-porous species was higher than those of the diffuse- and ring-porous species. The latter two functional groups showed no significant difference in the Klb-area, resulting in a significantly higher Klb-area for coniferous species than for that of broadleaved species. No differences was found in terms of the Kwb-area or Kb-area among tree species with different wood types or leaf habits. Leaf area-based hydraulic conductances were positively correlated with the LMA or LDMC, whereas leaf mass-based hydraulic conductances were negatively correlated with the LMA and LDMC. The Klb-area and Klb-mass showed a strong and a weak relationship with leaf traits, respectively.【Conclusion】The whole branches or leaf blades with petioles could be used to measure the Klb for all the tree species examined, with the exception of Pinus koraiensis. The Klb of coniferous species was higher than that of broadleaved tree species, which compensated for the lower xylem hydraulic efficiency, to some extent. Caution should be applied when analyzing the relationship between the Klb-area and leaf traits using the whole branch for coniferous tree species. Leaf mass-based hydraulic conductance can faithfully reflect the relationship between the leaf hydraulic conductance and the leaf traits of coniferous and broadleaved trees.

Key words

hydraulic conductance / coniferous tree / broadleaved tree / whole branch and its components / leaf trait / high-pressure flowmeter / northeast China

Cite this article

Download Citations
JING Shuo , SUN Huizhen. The hydraulic characteristics of the whole branch and its components of the major tree species in the eastern region of northeast China[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(4): 159-166 https://doi.org/10.12302/j.issn.1000-2006.202003027

References

[1]
SHEFFIELD J, WOOD E F. Global trends and variability in soil moisture and drought characteristics, 1950-2000, from observation-driven simulations of the terrestrial hydrologic cycle[J]. J Climate, 2008, 21(3):432-458. DOI: 10.1175/2007jcli1822.1.
[2]
ALLEN C D, MACALADY A K, CHENCHOUNI H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. For Ecol Manag, 2010, 259(4):660-684. DOI: 10.1016/j.foreco.2009.09.001.
[3]
段娜, 汪季, 郝玉光, 等. 水分变化对荒漠植物白刺气体交换参数及形态特征的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(6):32-38.
DUAN N, WANG J, HAO Y G, et al. Effects of gas exchange and morphological characteristics of desert species Nitraria tangutorum under moisture variation[J]. J Nanjing For Univ(Nat Sci Ed), 2019, 43(6):32-38. DOI: 10.3969/j.issn.1000-2006.201812036.
[4]
DOMEC J C, PALMROTH S, WARD E, et al. Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda(loblolly pine) to long-term growth in elevated CO2 (free-air CO2 enrichment) and N-fertilization[J]. Plant Cell Environ, 2009, 32(11):1500-1512. DOI: 10.1111/j.1365-3040.2009.02014.x.
[5]
VOICU M C, ZWIAZEK J J. Diurnal and seasonal changes of leaf lamina hydraulic conductance in bur oak (Quercus macrocarpa) and trembling aspen (Populus tremuloides)[J]. Trees-Struct Funct, 2011, 25(3):485-495. DOI: 10.1007/s00468-010-0524-8.
[6]
NARDINI A, PEDÀ G, LA ROCCA N. Trade-offs between leaf hydraulic capacity and drought vulnerability: morpho-anatomical bases, carbon costs and ecological consequences[J]. New Phytol, 2012, 196(3):788-798. DOI: 10.1111/j.1469-8137.2012.04294.x.
[7]
VILLAGRA M, CAMPANELLO P I, BUCCI S J, et al. Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species[J]. Tree Physiol, 2013, 33(12):1308-1318. DOI: 10.1093/treephys/tpt098.
[8]
金鹰, 王传宽. 九种不同材性的温带树种叶水力性状及其权衡关系[J]. 植物生态学报, 2016, 40(7):702-710.
Abstract
不同材性树种的解剖、叶脉分布等结构性状差异会影响树木的水分运输效率和水分利用策略, 进而限制树木的生存、生长和分布。然而, 材性对叶导水率、水力脆弱性及其潜在的权衡关系的影响尚不清楚。该研究选择东北温带森林中不同材性的9种树种(散孔材: 山杨(Populus davidiana)、紫椴(Tilia amurensis)、白桦(Betula platyphylla); 环孔材: 蒙古栎(Quercus mongolica)、水曲柳(Fraxinus mandshurica)、胡桃楸(Juglans mandshurica); 无孔材: 红皮云杉(Picea koraiensis)、樟子松(Pinus sylvestris var. mongolica)、红松(Pinus koraiensis), 测量其基于叶面积和叶质量的叶导水率(K<sub>area</sub>和K<sub>mass</sub>)、水力脆弱性(P<sub>50</sub>)、膨压丧失点水势(TLP)及叶结构性状, 以比较不同材性树种叶水力性状的差异, 并探索叶水力效率与安全的权衡关系。结果表明: 3种材性树种的K<sub>area</sub>、K<sub>mass</sub>和P<sub>50</sub>均差异显著(p &#x0003C; 0.05)。无孔材树种的K<sub>area</sub>和K<sub>mass</sub>最低, 而散孔材和环孔材树种差异不显著; 环孔材树种P<sub>50</sub>最高, 而散孔材和无孔材树种差异不显著。K<sub>area</sub>和K<sub>mass</sub>均与P<sub>50</sub>显著负相关(p &#x0003C; 0.05), 但散孔材、环孔材和无孔材树种的相关关系分别呈线性、幂函数和指数函数关系。这表明叶水力效率与安全之间存在一定的权衡关系, 但该关系受树木材性的影响。K<sub>mass</sub>与TLP显著负相关(p &#x0003C; 0.01), 其中散孔材和环孔材树种呈线性负相关, 无孔材树种呈负指数函数关系; P<sub>50</sub>随TLP的增加而增加, 这表明树木在面临水分胁迫时, 其质外体和共质体抗旱阻力共同协调保护叶片活细胞, 防止其水分状况到达临界阈值。K<sub>mass</sub>与叶干物质含量、叶密度、比叶重均显著负相关, 而P<sub>50</sub>与之显著正相关(p &#x0003C; 0.01, P<sub>50</sub>与比叶重的关系除外), 表明树木叶水力特性的变化受相同叶结构特性驱动, 树木增加对水力失调的容忍需要在叶水力系统构建上增加碳投资。
JIN Y, WANG C K. Leaf hydraulic traits and their trade-offs for nine Chinese temperate tree species with different wood properties[J]. Chin J Plant Ecol, 2016, 40(7):702-710. DOI: 10.17521/cjpe.2016.0064.
[9]
MARTINS S C, MCADAM S A, DEANS R M, et al. Stomatal dynamics are limited by leaf hydraulics in ferns and conifers: results from simultaneous measurements of liquid and vapour fluxes in leaves[J]. Plant Cell Environ, 2016, 39(3):694-705. DOI: 10.1111/pce.12668.
[10]
MEITERN A, ÕUNAPUU-PIKAS E, SELLIN A. Circadian patterns of xylem sap properties and their covariation with plant hydraulic traits in hybrid aspen[J]. J Plant Physiol, 2017, 213:148-156. DOI: 10.1016/j.jplph.2017.03.012.
[11]
成俊卿, 杨家驹, 刘鹏. 中国木材志[M]. 北京: 中国林业出版社, 1992.
CHENG J Q, YANG J J, LIU P. Woods of China[M]. Beijing: China Forestry Publishing House, 1992.
[12]
左力翔, 李俊辉, 李秧秧, 等. 散孔材与环孔材树种枝干、叶水力学特性的比较研究[J]. 生态学报, 2012, 32(16):5087-5094.
ZUO L X, LI J H, LI Y Y, et al. Comparison of hydraulic traits in branches and leaves of diffuse- and ring-porous species[J]. Acta Ecol Sin, 2012, 32(16):5087-5094. DOI: 10.5846/stxb201110281610.
[13]
BRODRIBB T J, HOLBROOK N M, HILL R S. Seedling growth in conifers and angiosperms: impacts of contrasting xylem structure[J]. Aust J Bot, 2005, 53(8):749-755. DOI: 10.1071/BT05049.
[14]
尹秋龙. 黄土高原木本植物叶经济性状和水力性状研究[D]. 西安: 西北大学, 2019.
YIN Q L. A study on the leaf economic traits and hydraulic traits of woody plants on the Loess Plateau[D]. Xi’an: Northwest University, 2019.
[15]
OHTSUKA A, SACK L, TANEDA H. Bundle sheath lignification mediates the linkage of leaf hydraulics and venation[J]. Plant Cell Environ, 2018, 41(2):342-353. DOI: 10.1111/pce.13087.
[16]
MCGILL B J, ENQUIST B J, WEIHER E, et al. Rebuilding community ecology from functional traits[J]. Trends Ecol Evol, 2006, 21(4):178-185. DOI: 10.1016/j.tree.2006.02.002.
[17]
KATTGE J, D’IAZ S, v LAVOREL, et al. TRY: a global database of plant traits[J]. Glob Change Biol, 2011, 17(9):2905-2935. DOI: 10.1111/j.1365-2486.2011.02451.x.
[18]
LIU B H, XU M, HENDERSON M, et al. Taking China’s temperature: daily range, warming trends, and regional variations, 1955-2000[J]. J Climate, 2004, 17(22):4453-4462. DOI: 10.1175/3230.1.
[19]
ZHAI P M, ZHANG X B, WAN H, et al. Trends in total precipitation and frequency of daily precipitation extremes over China[J]. J Climate, 2005, 18(7):1096-1108. DOI: 10.1175/JCLI-3318.1.
[20]
TYREE M T, EWERS F W. The hydraulic architecture of trees and other woody plants[J]. New Phytol, 1991, 119(3):345-360. DOI: 10.1111/j.1469-8137.1991.tb00035.x.
[21]
NARDINIA, SALLEO S, RAIMONDO F. Changes in leaf hydraulic conductance correlate with leaf vein embolism in Cercis si-liquastrum L.[J]. Trees-Struct Funct, 2003, 17(6):529-534. DOI: 10.1007/s00468-003-0265-z.
[22]
YANG S, TYREE M T. Hydraulic architecture of Acer saccharum and A. rubrum: comparison of branches to whole trees and the contribution of leaves to hydraulic resistance[J]. J Exp Bot, 1994, 45(2):179-186. DOI: 10.1093/jxb/45.2.179.
[23]
TYREE M T, SINCLAIR B, LU P, et al. Whole shoot hydraulic resistance in Quercus species measured with a new high-pressure flowmeter[J]. Ann For Sci, 1993, 50(5):417-423. DOI: 10.1051/forest:19930501.
[24]
BECKER P, TYREE M T, TSUDA M. Hydraulic conductances of angiosperms versus conifers: similar transport sufficiency at the whole-plant level[J]. Tree Physiol, 1999, 19(7):445-452. DOI: 10.1093/treephys/19.7.445.
[25]
SCOFFONI C, ALBUQUERQUE C, BRODERSEN C R, et al. Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline[J]. New Phytol, 2016, 213(3):1076-1092. DOI: 10.1111/nph.14256.
[26]
SALLEO S, RAIMONDO F, TRIFILÒ P, et al. Axial-to-radial water permeability of leaf major veins: a possible determinant of the impact of vein embolism on leaf hydraulics?[J]. Plant Cell Environ, 2003, 26(10):1749-1758. DOI: 10.1046/j.1365-3040.2003.01092.x.
[27]
COCHARD H, NARDINI A, COLL L. Hydraulic architecture of leaf blades: where is the main resistance?[J]. Plant Cell Environ, 2004, 27(10):1257-1267. DOI: 10.1111/j.1365-3040.2004.01233.x.
[28]
杨金艳, 范晶. 红松光合特性对CO2浓度升高的响应[J]. 东北林业大学学报, 2004, 32(6):16-18.
YANG J Y, FAN J. Photosynthetic characteristics responses of Pinus koraiensis to elevated carbon dioxide concentration[J]. J Northeast For Univ, 2004, 32(6):16-18. DOI: 10.3969/j.issn.1000-5382.2004.06.006.
[29]
韩士杰, 周玉梅, 王琛瑞, 等. 红松幼苗对CO2浓度升高的生理生态反应[J]. 应用生态学报, 2001, 12(1):27-30.
HAN S J, ZHOU Y M, WANG C R, et al. Ecophysiological response of Pinus koraiensis seedlings to elevated CO2[J]. Chin J Appl Ecol, 2001, 12(1):27-30. DOI: 10.1007/s11769-001-0027-z.
[30]
杨柳, 孙慧珍. 兴安落叶松水分利用对策[J]. 林业科学, 2016, 52(6):149-156.
YANG L, SUN H Z. Analysis of water management strategy for Larix gmelinii[J]. Sci Silvae Sin, 2016, 52(6):149-156. DOI: 10.11707/j.1001-7488.20160618.
[31]
敖红, 张羽. 亚硫酸钠和亚硫酸氢钠混合液对2种云杉某些生理指标影响的比较[J]. 植物生理学通讯, 2007, 43(2):259-263.
AO H, ZHANG Y. Comparison on effects of mixed li-quid of Na2SO3 and NaHSO3 on some physiological indexes of two spruces[J]. Plant Physiol Commun, 2007, 43(2):259-263. DOI: 10.13592/j.cnki.ppj.2007.02.011.
[32]
段瑞兵, 孙慧珍. 确定P-V曲线中质壁分离点的方法比较[J]. 南京林业大学学报(自然科学版), 2016, 40(4):89-94.
DUAN R B, SUN H Z. Comparison of different methods for determining the turgor loss point in pressure-volume curves[J]. J Nanjing For Univ(Nat Sci), 2016, 40(4):89-94. DOI: 10.3969/j.issn.1000-2006.2016.04.014.
[33]
曾俊, 孙慧珍. 超声发射特征归类识别木质部栓塞信息[J]. 南京林业大学学报(自然科学版), 2018, 42(1):89-97.
ZENG J, SUN H Z. Classification of ultrasonic acoustic emissions features on determining embolism-related signals[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(1):89-97. DOI: 10.3969/j.issn.1000-2006.201703030.
[34]
殷笑寒, 郝广友. 长白山阔叶树种木质部环孔和散孔结构特征的分化导致其水力学性状的显著差异[J]. 应用生态学报, 2018, 29(2):352-360.
YIN X H, HAO G Y. Divergence between ring-and diffuse-porous wood types in broadleaf trees of Changbai Mountains results in substantial differences in hydraulic traits[J]. Chin J Appl Ecol, 2018, 29(2):352-360. DOI: 10.13287/j.1001-9332.201802.035.
[35]
SACK L, COWAN P D, JAIKUMAR N, et al. The ‘hydrology’ of leaves: co-ordination of structure and function in temperate woody species[J]. Plant Cell Environ, 2003, 26(8):1343-1356. DOI: 10.1046/j.0016-8025.2003.01058.x.
[36]
ZWIENIECKI M A, BRODRIBB T J, HOLBROOK N M. Hydraulic design of leaves: insights from rehydration kinetics[J]. Plant Cell Environ, 2007, 30(8):910-921. DOI: 10.1111/j.1365-3040.2007.001681.x.
[37]
NARDINI A, LUGLIO J. Leaf hydraulic capacity and drought vulnerability: possible trade-offs and correlations with climate across three major biomes[J]. Funct Ecol, 2014, 28(4):810-818. DOI: 10.1111/1365-2435.12246.
[38]
WIKBERG J, ÖGREN E. Interrelationships between water use and growth traits in biomass-producing willows[J]. Trees-Struct Funct, 2004, 18(1):70-76. DOI: 10.1007/s00468-003-0282-y.
[39]
NARDINI A. Are sclerophylls and malacophylls hydraulically different?[J]. Biol Plantarum, 2001, 44(2):239-245. DOI: 10.1023/A:1010251425995.
[40]
FICHOT R, CHAMAILLARD S, DEPARDIEU C, et al. Hydraulic efficiency and coordination with xylem resistance to cavitation, leaf function, and growth performance among eight unrelated Po-pulus deltoides × Populus nigra hybrids[J]. J Exp Bot, 2011, 62(6):2093-2106. DOI: 10.1093/jxb/erq415.

黑龙江帽儿山森林生态系统国家野外科学观测研究站提供帮助。

RIGHTS & PERMISSIONS

Copyright reserved © 2021
PDF(2054 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/