JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (4): 159-166.doi: 10.12302/j.issn.1000-2006.202003027
Previous Articles Next Articles
Received:
2020-03-10
Accepted:
2020-06-22
Online:
2021-07-30
Published:
2021-07-30
Contact:
SUN Huizhen
E-mail:664042498@qq.com;sunhz-cf@nefu.edu.cn
CLC Number:
JING Shuo, SUN Huizhen. The hydraulic characteristics of the whole branch and its components of the major tree species in the eastern region of northeast China[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(4): 159-166.
Table 1
Basic characteristics of seven tree species"
树种(代号) species (code) | 材性(代号) wood type (code) | 叶习性 leaf habit | 生境 habitat |
---|---|---|---|
白桦(Bp) Betula platyphylla | 散孔材(DP) diffuse-porous | 落叶阔叶 | 山坡下部 |
五角槭(Am) Acer mono | 散孔材(DP) diffuse-porous | 落叶阔叶 | 山坡中部 |
春榆(Uj) Ulmus japonica | 环孔材(RP) ring-porous | 落叶阔叶 | 山坡下部 |
蒙古栎(Qm) Quercus mongolica | 环孔材(RP) ring-porous | 落叶阔叶 | 山坡中部 |
红松(Pks) Pinus koraiensis | 无孔材(NP) non-porous | 常绿针叶 | 山坡下部 |
红皮云杉(Pkn) Picea koraiensis | 无孔材(NP) non-porous | 常绿针叶 | 山坡中部 |
兴安落叶松(Lg) Larix gmelinii | 无孔材(NP) non-porous | 落叶针叶 | 山坡下部 |
Fig.1
Hydraulic conductance comparisons of branch and their parts for seven tree species (mean ± SE) Different lowercase letters indicate significant differences in hydraulic conductance of different parts of the same tree species in the same month (P<0.05). Tree abbreviations are shown in Table 1. The Kb, Klb, Kwb, and Kp represent the hydraulic conductance of the leafless branch, leaf blades, whole branch and petiole, respectively. The same below."
Fig.3
Hydraulic conductance comparisons of the same part among different tree species (mean ± SE) Different lowercase and uppercase letters indicate significant differences between different tree species, wood types, and leaf habits (P<0.05). Kb-area, Klb-area, and Kwb-area represent the hydraulic conductance of leafless branch, leaf blades, and whole branch based on leaf area(specific hydraulic conductance). The same below. The DP, RP, and NP represent diffuse-, ring-, and non-porous functional groups, respectively. The Br and Co represent broadleaf and conifer groups, respectively."
[1] |
SHEFFIELD J, WOOD E F. Global trends and variability in soil moisture and drought characteristics, 1950-2000, from observation-driven simulations of the terrestrial hydrologic cycle[J]. J Climate, 2008, 21(3):432-458. DOI: 10.1175/2007jcli1822.1.
doi: 10.1175/2007jcli1822.1 |
[2] |
ALLEN C D, MACALADY A K, CHENCHOUNI H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. For Ecol Manag, 2010, 259(4):660-684. DOI: 10.1016/j.foreco.2009.09.001.
doi: 10.1016/j.foreco.2009.09.001 |
[3] | 段娜, 汪季, 郝玉光, 等. 水分变化对荒漠植物白刺气体交换参数及形态特征的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(6):32-38. |
DUAN N, WANG J, HAO Y G, et al. Effects of gas exchange and morphological characteristics of desert species Nitraria tangutorum under moisture variation[J]. J Nanjing For Univ(Nat Sci Ed), 2019, 43(6):32-38. DOI: 10.3969/j.issn.1000-2006.201812036.
doi: 10.3969/j.issn.1000-2006.201812036 |
|
[4] |
DOMEC J C, PALMROTH S, WARD E, et al. Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda(loblolly pine) to long-term growth in elevated CO2 (free-air CO2 enrichment) and N-fertilization[J]. Plant Cell Environ, 2009, 32(11):1500-1512. DOI: 10.1111/j.1365-3040.2009.02014.x.
doi: 10.1111/j.1365-3040.2009.02014.x |
[5] |
VOICU M C, ZWIAZEK J J. Diurnal and seasonal changes of leaf lamina hydraulic conductance in bur oak (Quercus macrocarpa) and trembling aspen (Populus tremuloides)[J]. Trees-Struct Funct, 2011, 25(3):485-495. DOI: 10.1007/s00468-010-0524-8.
doi: 10.1007/s00468-010-0524-8 |
[6] |
NARDINI A, PEDÀ G, LA ROCCA N. Trade-offs between leaf hydraulic capacity and drought vulnerability: morpho-anatomical bases, carbon costs and ecological consequences[J]. New Phytol, 2012, 196(3):788-798. DOI: 10.1111/j.1469-8137.2012.04294.x.
doi: 10.1111/j.1469-8137.2012.04294.x |
[7] |
VILLAGRA M, CAMPANELLO P I, BUCCI S J, et al. Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species[J]. Tree Physiol, 2013, 33(12):1308-1318. DOI: 10.1093/treephys/tpt098.
doi: 10.1093/treephys/tpt098 |
[8] |
金鹰, 王传宽. 九种不同材性的温带树种叶水力性状及其权衡关系[J]. 植物生态学报, 2016, 40(7):702-710.
doi: 10.17521/cjpe.2016.0064 |
JIN Y, WANG C K. Leaf hydraulic traits and their trade-offs for nine Chinese temperate tree species with different wood properties[J]. Chin J Plant Ecol, 2016, 40(7):702-710. DOI: 10.17521/cjpe.2016.0064.
doi: 10.17521/cjpe.2016.0064 |
|
[9] |
MARTINS S C, MCADAM S A, DEANS R M, et al. Stomatal dynamics are limited by leaf hydraulics in ferns and conifers: results from simultaneous measurements of liquid and vapour fluxes in leaves[J]. Plant Cell Environ, 2016, 39(3):694-705. DOI: 10.1111/pce.12668.
doi: 10.1111/pce.12668 |
[10] |
MEITERN A, ÕUNAPUU-PIKAS E, SELLIN A. Circadian patterns of xylem sap properties and their covariation with plant hydraulic traits in hybrid aspen[J]. J Plant Physiol, 2017, 213:148-156. DOI: 10.1016/j.jplph.2017.03.012.
doi: 10.1016/j.jplph.2017.03.012 |
[11] | 成俊卿, 杨家驹, 刘鹏. 中国木材志[M]. 北京: 中国林业出版社, 1992. |
CHENG J Q, YANG J J, LIU P. Woods of China[M]. Beijing: China Forestry Publishing House, 1992. | |
[12] | 左力翔, 李俊辉, 李秧秧, 等. 散孔材与环孔材树种枝干、叶水力学特性的比较研究[J]. 生态学报, 2012, 32(16):5087-5094. |
ZUO L X, LI J H, LI Y Y, et al. Comparison of hydraulic traits in branches and leaves of diffuse- and ring-porous species[J]. Acta Ecol Sin, 2012, 32(16):5087-5094. DOI: 10.5846/stxb201110281610.
doi: 10.5846/stxb201110281610 |
|
[13] |
BRODRIBB T J, HOLBROOK N M, HILL R S. Seedling growth in conifers and angiosperms: impacts of contrasting xylem structure[J]. Aust J Bot, 2005, 53(8):749-755. DOI: 10.1071/BT05049.
doi: 10.1071/BT05049 |
[14] | 尹秋龙. 黄土高原木本植物叶经济性状和水力性状研究[D]. 西安: 西北大学, 2019. |
YIN Q L. A study on the leaf economic traits and hydraulic traits of woody plants on the Loess Plateau[D]. Xi’an: Northwest University, 2019. | |
[15] |
OHTSUKA A, SACK L, TANEDA H. Bundle sheath lignification mediates the linkage of leaf hydraulics and venation[J]. Plant Cell Environ, 2018, 41(2):342-353. DOI: 10.1111/pce.13087.
doi: 10.1111/pce.13087 |
[16] |
MCGILL B J, ENQUIST B J, WEIHER E, et al. Rebuilding community ecology from functional traits[J]. Trends Ecol Evol, 2006, 21(4):178-185. DOI: 10.1016/j.tree.2006.02.002.
doi: 10.1016/j.tree.2006.02.002 |
[17] |
KATTGE J, D’IAZ S, v LAVOREL, et al. TRY: a global database of plant traits[J]. Glob Change Biol, 2011, 17(9):2905-2935. DOI: 10.1111/j.1365-2486.2011.02451.x.
doi: 10.1111/j.1365-2486.2011.02451.x |
[18] |
LIU B H, XU M, HENDERSON M, et al. Taking China’s temperature: daily range, warming trends, and regional variations, 1955-2000[J]. J Climate, 2004, 17(22):4453-4462. DOI: 10.1175/3230.1.
doi: 10.1175/3230.1 |
[19] |
ZHAI P M, ZHANG X B, WAN H, et al. Trends in total precipitation and frequency of daily precipitation extremes over China[J]. J Climate, 2005, 18(7):1096-1108. DOI: 10.1175/JCLI-3318.1.
doi: 10.1175/JCLI-3318.1 |
[20] |
TYREE M T, EWERS F W. The hydraulic architecture of trees and other woody plants[J]. New Phytol, 1991, 119(3):345-360. DOI: 10.1111/j.1469-8137.1991.tb00035.x.
doi: 10.1111/j.1469-8137.1991.tb00035.x |
[21] |
NARDINIA, SALLEO S, RAIMONDO F. Changes in leaf hydraulic conductance correlate with leaf vein embolism in Cercis si-liquastrum L.[J]. Trees-Struct Funct, 2003, 17(6):529-534. DOI: 10.1007/s00468-003-0265-z.
doi: 10.1007/s00468-003-0265-z |
[22] |
YANG S, TYREE M T. Hydraulic architecture of Acer saccharum and A. rubrum: comparison of branches to whole trees and the contribution of leaves to hydraulic resistance[J]. J Exp Bot, 1994, 45(2):179-186. DOI: 10.1093/jxb/45.2.179.
doi: 10.1093/jxb/45.2.179 |
[23] |
TYREE M T, SINCLAIR B, LU P, et al. Whole shoot hydraulic resistance in Quercus species measured with a new high-pressure flowmeter[J]. Ann For Sci, 1993, 50(5):417-423. DOI: 10.1051/forest:19930501.
doi: 10.1051/forest:19930501 |
[24] |
BECKER P, TYREE M T, TSUDA M. Hydraulic conductances of angiosperms versus conifers: similar transport sufficiency at the whole-plant level[J]. Tree Physiol, 1999, 19(7):445-452. DOI: 10.1093/treephys/19.7.445.
doi: 10.1093/treephys/19.7.445 |
[25] |
SCOFFONI C, ALBUQUERQUE C, BRODERSEN C R, et al. Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline[J]. New Phytol, 2016, 213(3):1076-1092. DOI: 10.1111/nph.14256.
doi: 10.1111/nph.14256 |
[26] |
SALLEO S, RAIMONDO F, TRIFILÒ P, et al. Axial-to-radial water permeability of leaf major veins: a possible determinant of the impact of vein embolism on leaf hydraulics?[J]. Plant Cell Environ, 2003, 26(10):1749-1758. DOI: 10.1046/j.1365-3040.2003.01092.x.
doi: 10.1046/j.1365-3040.2003.01092.x |
[27] |
COCHARD H, NARDINI A, COLL L. Hydraulic architecture of leaf blades: where is the main resistance?[J]. Plant Cell Environ, 2004, 27(10):1257-1267. DOI: 10.1111/j.1365-3040.2004.01233.x.
doi: 10.1111/j.1365-3040.2004.01233.x |
[28] | 杨金艳, 范晶. 红松光合特性对CO2浓度升高的响应[J]. 东北林业大学学报, 2004, 32(6):16-18. |
YANG J Y, FAN J. Photosynthetic characteristics responses of Pinus koraiensis to elevated carbon dioxide concentration[J]. J Northeast For Univ, 2004, 32(6):16-18. DOI: 10.3969/j.issn.1000-5382.2004.06.006.
doi: 10.3969/j.issn.1000-5382.2004.06.006 |
|
[29] | 韩士杰, 周玉梅, 王琛瑞, 等. 红松幼苗对CO2浓度升高的生理生态反应[J]. 应用生态学报, 2001, 12(1):27-30. |
HAN S J, ZHOU Y M, WANG C R, et al. Ecophysiological response of Pinus koraiensis seedlings to elevated CO2[J]. Chin J Appl Ecol, 2001, 12(1):27-30. DOI: 10.1007/s11769-001-0027-z.
doi: 10.1007/s11769-001-0027-z |
|
[30] | 杨柳, 孙慧珍. 兴安落叶松水分利用对策[J]. 林业科学, 2016, 52(6):149-156. |
YANG L, SUN H Z. Analysis of water management strategy for Larix gmelinii[J]. Sci Silvae Sin, 2016, 52(6):149-156. DOI: 10.11707/j.1001-7488.20160618.
doi: 10.11707/j.1001-7488.20160618 |
|
[31] | 敖红, 张羽. 亚硫酸钠和亚硫酸氢钠混合液对2种云杉某些生理指标影响的比较[J]. 植物生理学通讯, 2007, 43(2):259-263. |
AO H, ZHANG Y. Comparison on effects of mixed li-quid of Na2SO3 and NaHSO3 on some physiological indexes of two spruces[J]. Plant Physiol Commun, 2007, 43(2):259-263. DOI: 10.13592/j.cnki.ppj.2007.02.011.
doi: 10.13592/j.cnki.ppj.2007.02.011 |
|
[32] | 段瑞兵, 孙慧珍. 确定P-V曲线中质壁分离点的方法比较[J]. 南京林业大学学报(自然科学版), 2016, 40(4):89-94. |
DUAN R B, SUN H Z. Comparison of different methods for determining the turgor loss point in pressure-volume curves[J]. J Nanjing For Univ(Nat Sci), 2016, 40(4):89-94. DOI: 10.3969/j.issn.1000-2006.2016.04.014.
doi: 10.3969/j.issn.1000-2006.2016.04.014 |
|
[33] | 曾俊, 孙慧珍. 超声发射特征归类识别木质部栓塞信息[J]. 南京林业大学学报(自然科学版), 2018, 42(1):89-97. |
ZENG J, SUN H Z. Classification of ultrasonic acoustic emissions features on determining embolism-related signals[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(1):89-97. DOI: 10.3969/j.issn.1000-2006.201703030.
doi: 10.3969/j.issn.1000-2006.201703030 |
|
[34] | 殷笑寒, 郝广友. 长白山阔叶树种木质部环孔和散孔结构特征的分化导致其水力学性状的显著差异[J]. 应用生态学报, 2018, 29(2):352-360. |
YIN X H, HAO G Y. Divergence between ring-and diffuse-porous wood types in broadleaf trees of Changbai Mountains results in substantial differences in hydraulic traits[J]. Chin J Appl Ecol, 2018, 29(2):352-360. DOI: 10.13287/j.1001-9332.201802.035.
doi: 10.13287/j.1001-9332.201802.035 |
|
[35] |
SACK L, COWAN P D, JAIKUMAR N, et al. The ‘hydrology’ of leaves: co-ordination of structure and function in temperate woody species[J]. Plant Cell Environ, 2003, 26(8):1343-1356. DOI: 10.1046/j.0016-8025.2003.01058.x.
doi: 10.1046/j.0016-8025.2003.01058.x |
[36] |
ZWIENIECKI M A, BRODRIBB T J, HOLBROOK N M. Hydraulic design of leaves: insights from rehydration kinetics[J]. Plant Cell Environ, 2007, 30(8):910-921. DOI: 10.1111/j.1365-3040.2007.001681.x.
doi: 10.1111/j.1365-3040.2007.001681.x |
[37] |
NARDINI A, LUGLIO J. Leaf hydraulic capacity and drought vulnerability: possible trade-offs and correlations with climate across three major biomes[J]. Funct Ecol, 2014, 28(4):810-818. DOI: 10.1111/1365-2435.12246.
doi: 10.1111/1365-2435.12246 |
[38] |
WIKBERG J, ÖGREN E. Interrelationships between water use and growth traits in biomass-producing willows[J]. Trees-Struct Funct, 2004, 18(1):70-76. DOI: 10.1007/s00468-003-0282-y.
doi: 10.1007/s00468-003-0282-y |
[39] |
NARDINI A. Are sclerophylls and malacophylls hydraulically different?[J]. Biol Plantarum, 2001, 44(2):239-245. DOI: 10.1023/A:1010251425995.
doi: 10.1023/A:1010251425995 |
[40] |
FICHOT R, CHAMAILLARD S, DEPARDIEU C, et al. Hydraulic efficiency and coordination with xylem resistance to cavitation, leaf function, and growth performance among eight unrelated Po-pulus deltoides × Populus nigra hybrids[J]. J Exp Bot, 2011, 62(6):2093-2106. DOI: 10.1093/jxb/erq415.
doi: 10.1093/jxb/erq415 |
[1] | XUE Yuanyuan, LUAN Zhaoqing, SHI Dan, YAN Dandan. The influences of the hydraulic gradient on the ecological characteristics of wetland vegetation communities in Sanjiang Plain, Northeast China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 39-47. |
[2] | CHEN Yuheng, LÜ Yiwei, YIN Xiaojie. Predicting habitat suitability of 12 coniferous forest tree species in southwest China based on climate change [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(6): 113-120. |
[3] | DENG Wenxin, ZHANG Kai, HUANG Qing, XU Xiaoniu*. Characteristics of needle nutrients and their retranslocation of urban common coniferous trees [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2009, 33(06): 87-. |
[4] | XUE Jianhui, SU Jing, LIU Jingen, WU Yongbo. Physiological responses of five evergreen broadleaved ornamental tree species to low temperature variations during winter season [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2009, 33(04): 38-42. |
[5] | ZHANG Ming1,2, LIU Fu-de1, WANG Zhong-sheng1, AN Shu-qing1*, WANG Wen-jin3, SONG Chang-hong4, ZHENG Jian-wei1, YANG Wen-jie1. Differences of leaf traits between pioneer and non-pioneer tree species in early succession stage of tropical montane rain forest [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2008, 32(04): 28-32. |
[6] | TIAN Ru-nan1, YUAN An-quan2, XUE Jian-hui1. Comparison on the Ability of Resistance to Pb Stress of Four Evergreen Broadleaved Trees Seedlings [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2005, 29(06): 81-84. |
[7] | Wang Fusheng Sun Duo\ Ye Jingzhong Zhao Xiuxie\ Zhang Jianfeng Luo Ganxi (Nanjing Forestry University Nanjing 210037). An Influence on the Features of Litter in Chinese Fir Forest by Means of Conserving Broadleaved Trees [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 1999, 23(06): 10-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||