JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (2): 1-9.doi: 10.12302/j.issn.1000-2006.202003037
Previous Articles Next Articles
SUN Long(), DOU Xu, HU Tongxin*(
)
Received:
2020-03-13
Accepted:
2020-07-04
Online:
2021-03-30
Published:
2021-04-09
Contact:
HU Tongxin
E-mail:sunlong365@126.com;htxhtxapple@sina.com
CLC Number:
SUN Long, DOU Xu, HU Tongxin. Research progress on the effects of forest fire on forest ecosystem C-N-P ecological stoichiometry characteristics[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(2): 1-9.
Table 1
Fire disturbance on soil ecological stoichiometry characteristics of different forest ecosystem"
气候类型 climate type | 植被类型,分布区 vegetation type, distribution area | 火烧强度 fire intensity | 火烧后恢 复时间/a time after fire | c(C)/% | c(N)/ (mg·kg-1) | c(P)/ (mg·kg-1) | N/P | 参考文献 reference |
---|---|---|---|---|---|---|---|---|
寒温带 cold temperate zone | 兴安落叶松林 L. gmelinii, 大兴安岭 Great Khing’an Mountains | 对照control | 1 | 10.100±2.000 a | 4 000±700 a | — | — | [ |
低 low | 6.800±0.800 a | 3 700±300 a | — | — | ||||
高 high | 7.300±1.200 a | 3 100±200 a | — | — | ||||
偃松-兴安 落叶松林 P. pumila- L. gmelinii, 大兴安岭 Great Khing’an Mountains | 对照control | 5 | 12.683±0.332 a | 5 460±430 a | 960±270 | 5.69±1.15 | [ | |
低 low | 11.945±0.918 a | 5 230±280 a | 870±340 | 6.01±2.02 | ||||
中medium | 8.793±0.401 b | 4 200±230 b | 530±210 | 7.92±2.70 | ||||
高 high | 7.255±0.392 c | 4 410±370 b | 440±370 | 10.02±7.58 | ||||
低 low | 19 | 12.174±0.187 a | 5 280±630 a | 930±520 | 5.68±2.49 | |||
中medium | 8.916±0.411 b | 4 490±470 b | 620±230 | 7.24±1.92 | ||||
高 high | 7.934±0.362 c | 4 400±170 b | 460±230 | 9.56±4.41 | ||||
兴安落叶松林 L. gmelinii, 大兴安岭 Great Khing’an Mountains | 对照control | 5 | — | — | 597±68 | — | [ | |
高 high | — | — | 833±160 | — | ||||
温带 temperate zone | 油松林 P. tabulaeformis (0~10 cm土壤层), 河北平泉 Pingquan,Hebei | 对照control | 1 | 2.960±0.060 | 1 850±930 a | 380±190 a | 4.87±0.01 | [ |
低 low | 2.340±0.030 | 1 340±90 a | 240±10 a | 5.58±0.14 | ||||
中medium | 2.430±0.030 | 860±240 a | 110±40 a | 7.81±0.66 | ||||
高 high | 2.970±0.410 | 2 170±130 a | 290±30 a | 7.48±0.33 | ||||
油松林 P. tabulaeformis (10~20 cm土壤层), 河北平泉 Pingquan,Hebei | 对照control | 1 | 1.560±0.060 | 1 260±810 a | 330±190 a | 3.81±0.26 | ||
低 low | 1.300±0.060 | 790±140 a | 190±20 a | 4.15±0.30 | ||||
中medium | 1.270±0.060 | 470±90 a | 60±20 a | 7.83±1.11 | ||||
高 high | 1.680±0.220 | 1 110±140 a | 170±0 a | 6.52±0.82 | ||||
油松林 P. tabulaeformis (20~30 cm土壤层), 河北平泉 Pingquan,Hebei | 对照control | 1 | 0.740±0.080 | 910±730 a | 300±160 a | 3.03±0.82 | ||
低 low | 0.950±0.050 | 620±90 a | 170±20 a | 3.65±0.10 | ||||
中medium | 0.650±0.030 | 320±90 a | 50±0 a | 6.4±1.80 | ||||
高 high | 1.000±0.080 | 740±230 a | 160±60 a | 4.63±0.30 | ||||
亚热带 subtropical zone | 常桉林E. crebra, 昆士兰州Queensland | 对照control | 5 | 2.300±0.200 | 3 750±530 | 347±26 | 10.81±0.72 | [ |
低 low | 1.900±0.200 | 5 700±590 | 635±50 | 8.98±0.22 | ||||
枫香林L. formosana, 湖南株洲 Zhuzhou,Hunan | 对照control | — | 3.390±0.900 a | 2 000±600 ab | 260±30 ab | 7.69±1.42 | [ | |
低 low | 3.080±0.360 a | 2 100±600 a | 260±20 b | 8.08±1.69 | ||||
中medium | 2.870±0.340 | 1 900±400 b | 250±20 b | 7.60±0.99 | ||||
高 high | 2.530±0.480 | 1 800±500 b | 230±30 | 7.83±1.15 | ||||
马尾松-木荷林 P. massoniana- S. superba, 湖南株洲 Zhuzhou,Hunan | 对照control | — | 1.530±0.660 a | 1 200±300 ab | 220±40 abc | 5.45±0.37 | ||
低 low | 1.400±0.380 a | 1 200±300 a | 220±30 b | 5.45±0.62 | ||||
中medium | 1.310±0.350 a | 1 100±200 b | 210±30 b | 5.24±0.20 | ||||
高 high | 1.130±0.320 | 1 000±200 b | 190±40 c | 5.26±0.06 | ||||
杉木-木荷 C. lanceolata- S. superba, 湖南株洲 Zhuzhou,Hunan | 对照control | — | 2.090±1.060 a | 2 500±400 abc | 320±40 abc | 7.81±0.27 | ||
低 low | 1.830±0.530 a | 2 600±500 a | 320±40 a | 8.13±0.55 | ||||
中medium | 1.680±0.420 a | 2 400±300 b | 310±30 b | 7.74±0.22 | ||||
高 high | 1.470±0.300 | 2 200±400 c | 290±40 c | 7.59±0.33 | ||||
檫木-杉木林 S. tzumu-C. lanceolata, 湖南湘潭 Xiangtan,Hunan | 对照control | — | 1.440±1.060 ab | 900±30 a | 100±10 a | 9.00±0.60 | ||
低 low | 1.290±0.700 a | 900±30 a | 90±20 a | 10.00±1.33 | ||||
中medium | 1.200±0.590 ab | 800±30 a | 90±10 a | 8.89±0.65 | ||||
高 high | 1.040±0.500 b | 900±80 a | 90±20 a | 10.00±1.89 | ||||
热带 tropical zone | 稀树草原* Savanna | 对照control | 0.046±0.004 a | 2 890±220 a | 1 540±150 | 1.88±0.04 | [ | |
1 | 0.037±0.003 b | 1 790±70 b | 1 740±230 | 1.03±0.10 | ||||
低 low | 3 | 0.039±0.005 b | 2 040±150 b | 1 660±320 | 1.23±0.15 | |||
雨林rain forest, 黑卡诺Cano Negro, 哥斯达黎加Costa Rica | 对照control | 1 | 5.460±0.500 | 5 400±40 | 2.89±0.14 | 1 868.51±76.68 | [ | |
低 low | 4.270±0.700 | 4 200±100 | 4.53±0.18 | 927.15±14.77 | ||||
雨林rain forest, 西孟加拉邦Kukra, 印度India | 对照control | 1 | 6.980±2.300 | 5 700±100 | 3.54±0.21 | 1 610.17±67.27 | ||
低 low | 10.480±1.700 | 9 100±100 | 7.60±0.18 | 1 197.37±15.20 |
[1] | STEPHENS S L, AGEE J K, FULÉ P Z, et al. Land use: managing forests and fire in changing climates[J]. Science, 2013,342(6154):41-42.DOI: 10.1126/science.1240294. |
[2] | 赵一娉, 曹扬, 陈云明, 等. 黄土丘陵沟壑区森林生态系统生态化学计量特征[J]. 生态学报, 2017,37(16):5451-5460. |
ZHAO Y P, CAO Y, CHEN Y M, et al. Ecological stoichiometry in a forest ecosystem in the hilly-gully area of the Loess Plateau[J]. Acta Ecol Sin, 2017,37(16):5451-5460.DOI: 10.5846/stxb201605170951. | |
[3] | 张亨宇. 火干扰对大兴安岭北方森林土壤性质和碳氮磷化学计量特征的影响[D]. 沈阳:沈阳师范大学, 2019. |
ZHANG H Y. Effects of fire disturbance on the soil properties and C/N/P stoichiometry in the boreal forest of Great Xing’an Mountains[D]. Shenyang:Shenyang Normal University, 2019. | |
[4] | BUTLER O M, ELSER J J, LEWIS T, et al. The multi-element stoichiometry of wet eucalypt forest is transformed by recent,frequent fire[J]. Plant Soil, 2020,447(1/2):447-461.DOI: 10.1007/s11104-019-04397-z. |
[5] | SCHAFER J L, MACK M C. Short-term effects of fire on soil and plant nutrients in palmetto flatwoods[J]. Plant Soil, 2010,334(1/2):433-447.DOI: 10.1007/s11104-010-0394-2. |
[6] | 孙骞, 王兵, 周怀平, 等. 黄土丘陵区小流域土壤碳氮磷生态化学计量特征的空间变异性[J]. 生态学杂志, 2020,39(3):766-774. |
SUN Q, WANG B, ZHOU H P, et al. Spatial variation of ecological stoichiometry of soil C,N and P in a small catchment of loess hilly area[J]. Chin J Ecol, 2020,39(3):766-774.DOI: 10.13292/j.1000-4890.202003.037. | |
[7] | DELGADO-BAQUERIZO M, MAESTRE F T, GALLARDO A, et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands[J]. Nature, 2013,502(7473):672-676.DOI: 10.1038/nature12670. |
[8] | DIJKSTRA F A, ADAMS M A. Fire eases imbalances of nitrogen and phosphorus in woody plants[J]. Ecosystems, 2015,18(5):769-779.DOI: 10.1007/s10021-015-9861-1. |
[9] | BUTLER O M, LEWIS T, CHEN C R. Prescribed fire alters foliar stoichiometry and nutrient resorption in the understorey of a subtropical eucalypt forest[J]. Plant Soil, 2017,410(1/2):181-191.DOI: 10.1007/s11104-016-2995-x. |
[10] | PELLEGRINI A F A, HEDIN L O, STAVER A C, et al. Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna[J]. Ecology, 2015,96(5):1275-1285.DOI: 10.1890/14-1158.1. |
[11] | STERNER R W, ELSER J J. Ecological stoichiometry: the biology of elements from molecules to the biosphere[M]. Princeton: Princeton University Press, 2002. |
[12] | WARDLE D A, WALKER L R, BARDGETT R D. Ecosystem properties and forest decline in contrasting long-term chronosequences[J]. Science, 2004,305(5683):509-513.DOI: 10.1126/science.1098778. |
[13] | NEARY D G, RYAN K C, DEBANO L F. Wildland fire in ecosystems:effects of fire on soils and water[R]. U.S.Department of Agriculture,Forest Service, Rocky Mountain Research Station, 2005.DOI: 10.2737/rmrs-gtr-42-v4. |
[14] | PELLEGRINI A F A, AHLSTRÖM A, HOBBIE S E, et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity[J]. Nature, 2018,553(7687):194-198.DOI: 10.1038/nature24668. |
[15] | DIJKSTRA F A, JENKINS M, DE RÉMY DE COURCELLES V, et al. Enhanced decomposition and nitrogen mineralization sustain rapid growth of Eucalyptus regnans after wildfire[J]. J Ecol, 2017,105(1):229-236.DOI: 10.1111/1365-2745.12663. |
[16] | AGREN G I, WEIH M. Plant stoichiometry at different scales:element concentration patterns reflect environment more than genotype[J]. New Phytol, 2012,194(4):944-952.DOI: 10.1111/j.1469-8137.2012.04114.x. |
[17] | CHAPIN F S III, MATSON P A, MOONEY H A. Principles of terrestrial ecosystem ecology[M]. New York:Springer New York, 2002.DOI: 10.1007/b97397. |
[18] | WANG X G, LÜ X T, HAN X G. Responses of nutrient concentrations and stoichiometry of senesced leaves in dominant plants to nitrogen addition and prescribed burning in a temperate steppe[J]. Ecol Eng, 2014,70:154-161.DOI: 10.1016/j.ecoleng.2014.05.015. |
[19] | BUTLER O M, REZAEI RASHTI M, LEWIS T, et al. High-frequency fire alters soil and plant chemistry but does not lead to nitrogen-limited growth of Eucalyptus pilularis seedlings[J]. Plant Soil, 2018,432(1/2):191-205.DOI: 10.1007/s11104-018-3797-0.159-1606. |
[20] | SCHALLER J, TISCHER A, STRUYF E, et al. Fire enhances phosphorus availability in topsoils depending on binding properties[J]. Ecology, 2015,96(6):1598-1606. DOI: 10.1890/14-1311.1. |
[21] | KONG J J, YANG J, BAI E. Long-term effects of wildfire on available soil nutrient composition and stoichiometry in a Chinese boreal forest[J]. Sci Total Environ, 2018,642:1353-1361. DOI: 10.1016/j.scitotenv.2018.06.154. |
[22] | MURPHY J D, JOHNSON D W, MILLER W W, et al. Wildfire effects on soil nutrients and leaching in a tahoe basin watershed[J]. Journal of Environmental Quality, 2006,35(2):479-489. DOI: 10.2134/jeq2005.0144. |
[23] | 遆萌萌. 火烧和氮添加对气候过渡带针阔混交林叶片功能性状的影响[D]. 开封:河南大学, 2019. |
TI M M. Effects of burning and nitrogen addition on leaf function traits of coniffrous-broadleaf forest in the climatic transitional zone[D]. Kaifeng: Henan University, 2019. | |
[24] | CUI Q, LÜ X T, WANG Q B, et al. Nitrogen fertilization and fire act independently on foliar stoichiometry in a temperate steppe[J]. Plant Soil, 2010,334(1/2):209-219.DOI: 10.1007/s11104-010-0375-5. |
[25] | BRITTON A J, HELLIWELL R C, FISHER J M, et al. Interactive effects of nitrogen deposition and fire on plant and soil chemistry in an alpine heathland[J]. Environ Pollut, 2008,156(2):409-416.DOI: 10.1016/j.envpol.2008.01.029. |
[26] | HENRY H A L, CHIARIELLO N R, VITOUSEK P M, et al. Interactive effects of fire,elevated carbon dioxide,nitrogen deposition,and precipitation on a California annual grassland[J]. Ecosystems, 2006,9(7):1066-1075.DOI: 10.1007/s10021-005-0077-7. |
[27] | GÜSEWELL S, VERHOEVEN J T A. Litter N:P ratios indicate whether N or P limits the decomposability of graminoid leaf litter[J]. Plant Soil, 2006,287(1/2):131-143.DOI: 10.1007/s11104-006-9050-2. |
[28] | 黄铄淇, 胡慧蓉, 韩钊龙, 等. 林火对昆明人工林凋落物和表层土壤碳氮的影响[J]. 四川农业大学学报, 2014,32(1):18-22. |
HUANG S Q, HU H R, HAN Z L, et al. Effects of fire on carbon and nitrogen pools in litter and topsoil of plantations,Kunming[J]. J Sichuan Agric Univ, 2014,32(1):18-22.DOI: 10.3969/j.issn.1000-2650.2014.01.003. | |
[29] | 杨新芳, 鲍雪莲, 胡国庆, 等. 大兴安岭不同火烧年限森林凋落物和土壤C、N、P化学计量特征[J]. 应用生态学报, 2016,27(5):1359-1367. |
YANG X F, BAO X L, HU G Q, et al. C : N : P stoichiometry characteristics of litter and soil of forests in Great Xing’an Mountains with different fire years[J]. Chin J Appl Ecol, 2016,27(5):1359-1367.DOI: 10.13287/j.1001-9332.201605.030. | |
[30] | TOBERMAN H, CHEN C R, LEWIS T, et al. High-frequency fire alters C:N:P stoichiometry in forest litter[J]. Glob Chang Biol, 2014,20(7):2321-2331.DOI: 10.1111/gcb.12432. |
[31] | BENGTSSON J, JANION C, CHOWN S L, et al. Variation in decomposition rates in the fynbos biome, south Africa:the role of plant species and plant stoichiometry[J]. Oecologia, 2011,165(1):225-235.DOI: 10.1007/s00442-010-1753-7. |
[32] | KLOPATEK J M, KLOPATEK C C, DEBANO L F. Fire effects on nutrient pools of woodland floor materials and soils in a pinyon-juniper ecosystem[C]// NODVIN S C, WALDROP T A. Proceedings of an international symposium: fire and the environment: ecological and cultural perspectives, 1991: 154-159. https://www.frames.gov/catalog/16108. |
[33] | ZHOU X, SUN H, PUMPANEN J, et al. The impact of wildfire on microbial C:N:P stoichiometry and the fungal-to-bacterial ratio in permafrost soil[J]. Biogeochemistry, 2019,142(1):1-17.DOI: 10.1007/s10533-018-0510-6. |
[34] | 程瑞梅, 王娜, 肖文发, 等. 陆地生态系统生态化学计量学研究进展[J]. 林业科学, 2018,54(7):130-136. |
CHENG R M, WANG N, XIAO W F, et al. Advances in studies of ecological stoichiometry of terrestrial ecosystems[J]. Sci Silvae Sin, 2018,54(7):130-136.DOI: 10.11707/j.1001-7488.20180714. | |
[35] | HEDIN L O, VITOUSEK P M, MATSON P A. Nutrient losses over four million years of tropical forest development[J]. Ecology, 2003,84(9):2231-2255.DOI: 10.1890/02-4066. |
[36] | VITOUSEK P M, PORDER S, HOULTON B Z, et al. Terrestrial phosphorus limitation:mechanisms,implications,and nitrogen-phosphorus interactions[J]. Ecol Appl, 2010,20(1):5-15.DOI: 10.1890/08-0127.1. |
[37] | 孔健健, 杨健. 火烧对中国东北部兴安落叶松林土壤性质和营养元素有效性的影响[J]. 生态学杂志, 2013,32(11):2837-2843. |
KONG J J, YANG J. Effects of fire on soil properties and nutrient availability in a Dahurian larch forest in Great Xing’an Mountains of northeast China[J]. Chin J Ecol, 2013,32(11):2837-2843. | |
[38] | 谷会岩, 金屿淞, 张芸慧, 等. 林火对大兴安岭偃松-兴安落叶松林土壤养分的影响[J]. 北京林业大学学报, 2016,38(7):48-54. |
GU H Y, JIN Y S, ZHANG Y H, et al. Effects of forest fire on soil;nutrients of ass Pinus pumila-Larix gmelinii forest in Great Xing’an Mountains[J]. J Beijing For Univ, 2016,38(7):48-54.DOI: 10.13332/j.1000-1522.20150510. | |
[39] | 孔健健, 张亨宇, 于龙, 等. 林火干扰后大兴安岭森林土壤磷的变化特征[J]. 沈阳师范大学学报(自然科学版), 2019,37(2):149-154. |
KONG J J, ZHANG H Y, YU L, et al. Change characteristics of forest soil phosphorus after fire in Great Xing’an Mountains[J]. J Shenyang Norm Univ (Nat Sci Ed), 2019,37(2):149-154.DOI: 10.3969/j.issn.1673-5862.2019.02.010. | |
[40] | 李炳怡, 刘冠宏, 李伟克, 等. 不同火强度对河北平泉油松林土壤有机碳及土壤养分影响[J]. 生态科学, 2018,37(4):35-44. |
LI B Y, LIU G H, LI W K, et al. Effects of different wildfire intensities on soil organic carbon and soil nutrients in Pinus tabulaeformis forests in Pingquan County,Hebei Province[J]. Ecol Sci, 2018,37(4):35-44.DOI: 10.14108/j.cnki.1008-8873.2018.04.004. | |
[41] | 曾素平, 刘发林, 赵梅芳, 等. 火干扰强度对亚热带四种森林类型土壤理化性质的影响[J]. 生态学报, 2020,40(1):233-246. |
ZENG S P, LIU F L, ZHAO M F, et al. Effects of fire disturbance intensities on soil physiochemical properties of pour subtropical forest types[J]. Acta Ecol Sin, 2020,40(1):233-246.DOI: 10.5846/stxb201812052665. | |
[42] | BLAIR B C. Fire effects on the spatial patterns of soil resources in a Nicaraguan wet tropical forest[J]. J Trop Ecol, 2005,21(4):435-444.DOI: 10.1017/s0266467405002452. |
[43] | HUME A, CHEN H Y H, TAYLOR A R, et al. Soil C:N:P dynamics during secondary succession following fire in the boreal forest of central Canada[J]. For Ecol Manag, 2016,369:1-9.DOI: 10.1016/j.foreco.2016.03.033. |
[44] | 胡海清. 林火生态与管理[M].修订版. 北京: 中国林业出版社, 2005. |
[45] | REINHART K O, DANGI S R, VERMEIRE L T. The effect of fire intensity,nutrients,soil microbes,and spatial distance on grassland productivity[J]. Plant Soil, 2016,409(1/2):203-216.DOI: 10.1007/s11104-016-2957-3. |
[46] | NAVE L E, VANCE E D, SWANSTON C W, et al. Fire effects on temperate forest soil C and N storage[J]. Ecol Appl, 2011,21(4):1189-1201.DOI: 10.1890/10-0660.1. |
[47] | ÅGREN G I, WETTERSTEDT J Å M, BILLBERGER M F K. Nutrient limitation on terrestrial plant growth-modeling the interaction between nitrogen and phosphorus[J]. New Phytol, 2012,194(4):953-960.DOI: 10.1111/j.1469-8137.2012.04116.x. |
[48] | KIRKMAN K P, COLLINS S L, SMITH M D, et al. Responses to fire differ between south African and north American grassland communities[J]. J Veg Sci, 2014,25(3):793-804.DOI: 10.1111/jvs.12130. |
[49] | LAVOIE M, STARR G, MACK M C, et al. Effects of a prescribed fire on understory vegetation,carbon pools,and soil nutrients in a longleaf pine-slash pine forest in Florida[J]. Nat Areas J, 2010,30(1):82-94.DOI: 10.3375/043.030.0109. |
[50] | HU T X, HU H Q, LI F, et al. Long-term effects of post-fire restoration types on nitrogen mineralisation in a Dahurian larch (Larix gmelinii) forest in boreal China[J]. Sci Total Environ, 2019,679:237-247.DOI: 10.1016/j.scitotenv.2019.05.008. |
[51] | HART S C, DELUCA T H, NEWMAN G S, et al. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils[J]. For Ecol Manag, 2005,220(1/2/3):166-184.DOI: 10.1016/j.foreco.2005.08.012. |
[52] | AUGUSTO L, DE SCHRIJVER A, VESTERDAL L, et al. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests[J]. Biol Rev, 2015,90(2):444-466.DOI: 10.1111/brv.12119. |
[53] | SCHWILK D W, ACKERLY D D. Flammability and serotiny as strategies:correlated evolution in pines[J]. Oikos, 2001,94(2):326-336.DOI: 10.1034/j.1600-0706.2001.940213.x. |
[54] | LEE S W, LEE M B, LEE Y G, et al. Relationship between landscape structure and burn severity at the landscape and class levels in Samchuck,south Korea[J]. For Ecol Manag, 2009,258(7):1594-1604.DOI: 10.1016/j.foreco.2009.07.017. |
[55] | CHEN X H, DUAN Z H, TAN M L. Restoration affect soil organic carbon and nutrients in different particle-size fractions[J]. Land Degrad Dev, 2016,27(3):561-572.DOI: 10.1002/ldr.2400. |
[56] | STRYDOM T, RIDDELL E S, ROWE T, et al. The effect of experimental fires on soil hydrology and nutrients in an African savanna[J]. Geoderma, 2019,345:114-122.DOI: 10.1016/j.geoderma.2019.03.027. |
[57] | GE N N, WEI X R, WANG X, et al. Soil texture determines the distribution of aggregate-associated carbon,nitrogen and phosphorous under two contrasting land use types in the Loess Plateau[J]. CATENA, 2019,172:148-157.DOI: 10.1016/j.catena.2018.08.021. |
[58] | 孙龙, 赵俊, 胡海清. 中度火干扰对白桦落叶松混交林土壤理化性质的影响[J]. 林业科学, 2011,47(2):103-110. |
SUN L, ZHAO J, HU H Q. Effect of moderate fire disturbance on soil physical and chemical properties of Betula platyphylla-Larix gmelinii mixed forest[J]. Sci Silvae Sin, 2011,47(2):103-110. | |
[59] | MOXHAM C, DORROUGH J, BRAMWELL M, et al. Fire exclusion and soil texture interact to influence temperate grassland flora in south-eastern Australia[J]. Aust J Bot, 2016,64(5):417.DOI: 10.1071/bt16056. |
[60] | 耿玉清, 周荣伍, 李涛, 等. 北京西山地区林火对土壤性质的影响[J]. 中国水土保持科学, 2007,5(5):66-70. |
GENG Y Q, ZHOU R W, LI T, et al. Influences of forest fire on soil properties in Xishan area of Beijing[J]. Sci Soil Water Conserv, 2007,5(5):66-70.DOI: 10.3969/j.issn.1672-3007.2007.05.012. | |
[61] | YU Q, CHEN Q S, ELSER J J, et al. Linking stoichiometric homoeostasis with ecosystem structure,functioning and stability[J]. Ecol Lett, 2010,13(11):1390-1399.DOI: 10.1111/j.1461-0248.2010.01532.x. |
[62] | 张婷婷, 刘文耀, 黄俊彪, 等. 植物生态化学计量内稳性特征[J]. 广西植物, 2019,39(5):701-712. |
ZHANG T T, LIU W Y, HUANG J B, et al. Characteristics of plant ecological stoichiometry homeostasis[J]. Guihaia, 2019,39(5):701-712.DOI: 10.11931/guihaia.gxzw201805050. | |
[63] | JEYASINGH P D, GOOS J M, THOMPSON S K, et al. Ecological stoichiometry beyond redfield:an ionomic perspective on elemental homeostasis[J]. Front Microbiol, 2017,8:722.DOI: 10.3389/fmicb.2017.00722. |
[64] | ZHANG L, LIU L J, PAN K W, et al. Post-wildfire soil and plant foliar nutrient ratios and soil fungi:bacterial ratios in alpine meadows on the southeastern Qinghai-Tibet Plateau[J]. Int J Wildland Fire, 2015,24(7):933.DOI: 10.1071/wf14147. |
[65] | LUCAS R W, KLAMINDER J, FUTTER M N, et al. A meta-analysis of the effects of nitrogen additions on base cations: implications for plants,soils,and streams[J]. For Ecol Manag, 2011,262(2):95-104.DOI: 10.1016/j.foreco.2011.03.018. |
[66] | BAI X J, WANG B R, AN S S, et al. Response of forest species to C:N:P in the plant-litter-soil system and stoichiometric homeostasis of plant tissues during afforestation on the Loess Plateau,China[J]. Catena, 2019,183:104186.DOI: 10.1016/j.catena.2019.104186. |
[67] | ZHANG W, LIU W C, XU M P, et al. Response of forest growth to C:N:P stoichiometry in plants and soils during Robinia pseudoacacia afforestation on the Loess Plateau,China[J]. Geoderma, 2019,337:280-289.DOI: 10.1016/j.geoderma.2018.09.042. |
[68] | MOYA D, GONZÁLEZ-DE VEGA S, LOZANO E, et al. The burn severity and plant recovery relationship affect the biological and chemical soil properties of Pinus halepensis Mill.stands in the short and mid-terms after wildfire[J]. J Environ Manag, 2019,235:250-256.DOI: 10.1016/j.jenvman.2019.01.029. |
[1] | HE Nailei, ZHANG Jinsheng, LIN Wenshu. Forest fire image recognition based on deep learning multi-target detection technology [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 207-218. |
[2] | LI Yansong, YANG Yanrong, ZHANG Wenyi, ZHANG Leying, HUANG Ao, ZHANG Yirong. Relationship between characteristics of lightning activity on different underlying surface and forest lightning fire in southwest China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 219-228. |
[3] | YANG Hao, LIU Chao, ZHUANG Jiayao, ZHANG Shutong, ZHANG Wentao, MAO Guohao. Effects of different carrier bacterial fertilizers on growth, photosynthetic characteristics and soil nutrients of Amorpha fruticosa [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 81-89. |
[4] | DING Yong, LIU Xin, ZHANG Jinchi, WANG Yuhao, CHEN Meiling, LI Tao, LIU Xiaowu, ZHOU Yuexiang, SUN Lianhao, LIAO Yi. Effects of acid rain-based transformation on Cunninghamia lanceolata fine root growth and soil nutrient content [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 90-98. |
[5] | WU Yan, HUANG Qing, LIU Xun, ZHENG Rui, CEN Jiabao, DING Bo, ZHANG Yunlin, FU Yuhong. Effects of Pinus massoniana plantation age on soil physical and chemical properties in Karst areas in southwest China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 99-107. |
[6] | ZUO Zhuang, ZHANG Yun, CUI Xiaoyang. Early effects of fire on soil nitrogen content and form in Larix gmelinii forests [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 147-154. |
[7] | ZHANG Xiaodi, LI Mingze, WANG Bin, WU Zechuan, MO Zhukun, FAN Zhongzhou. Real-time extraction of fire line and optimization of spread simulation fire line based on infrared sequence images [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 192-202. |
[8] | ZHANG Wenwen, WANG Jin, WANG Qiuhua, ZHANG Xiyan, CAO Hengmao, LONG Tengteng. Analyses on spatial and temporal characteristics of forest fires in Yunnan Province based on MODIS from 2001 to 2020 [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 73-79. |
[9] | HE Kun, WANG Junjie, WANG Benyao, ZHU Haijun, FENG Shucheng. Soil fertility spatial distribution and characteristics of roadside trees in Shanghai [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 164-172. |
[10] | XU Zihan, WANG Lei, CUI Ming, LIU Yuguo, ZHAO Ziqing, LI Jiahao. Soil stoichiometry characteristics of different vegetation restoration modes in water source area of South-to-North Water Diversion Project [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 173-181. |
[11] | YANG Yongchao, DUAN Wenbiao, CHEN Lixin, QU Meixue, WANG Yafei, WANG Meijuan, SHI Jinyong, PAN Lei. Effects of simulated nitrogen and phosphorus deposition and litter treatment on soil organic carbon components in two types of Pinus koraiensis forests [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 57-66. |
[12] | XU Chen, RUAN Honghua, WU Xiaoqiao, XIE Youchao, YANG Yan. Progresses in drought stress on the accumulation and turnover of soil organic carbon in forests [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 195-206. |
[13] | LEI Haiqing, SUN Gaoqiu, ZHENG Deli. Carbon storage of forest ecosystem in Wenzhou City, Zhejiang Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 20-26. |
[14] | XIE Junyi, XU Xia, CAI Bin, ZHANG Huiguang. Responses of forest soil labile nitrogen pool and nitrogen cycle to the changes of carbon input under “carbon neutrality” [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 1-11. |
[15] | HUANG Zijing, XU Xia, ZHANG Huiguang, CAI Bin, LI Liangbin. Advances in effects of root input on forest soil carbon pool and carbon cycle [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(1): 25-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||