Ecological stoichiometry in leaves, branches and roots of Torreya grandis with different forest ages and its stoichiometric homoeostasis

YUAN Yanan, LI Zhengca, WANG Bin, ZHANG Yujie, HUANG Shengyi

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (6) : 135-142.

PDF(2028 KB)
PDF(2028 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (6) : 135-142. DOI: 10.12302/j.issn.1000-2006.202003057

Ecological stoichiometry in leaves, branches and roots of Torreya grandis with different forest ages and its stoichiometric homoeostasis

Author information +
History +

Abstract

【Objective】 The objective of this study is to investigate C, N and P stoichiometric characteristics and stoichiometric homoeostasis of Torreya grandis.【Method】 The T. grandis of different ages (0-100, ≥100-300, ≥300-500 and ≥500 a) were selected from Zhuji National Forest Park of Zhejiang Province. The plant samples (roots, branches and leaves) and 0-20 cm soil samples of T. grandis of different ages were collected from the field to analyze the C, N and P stoichiometric characteristics and stoichiometric homoeostasis.【Result】 There were no significant differences in C, N and P concentrations and stoichiometric characteristics of T. grandis of different ages. The concentrations of C, N and P were the highest in ≥300-500 a, and the concentrations of C and N in branches and leaves were the lowest in ≥500 a, while the concentrations of P in roots were the lowest in ≥100-300 a, and the N/P of leaves of different ages was lower than the threshold of N limitation of 14. The concentrations of C, N and P in different organs showed the same trend: leaf > branch > root. The concentrations of C and P in leaves and branches were significantly higher than those in roots, and the concentrations of N in leaves were significantly higher than those in roots and branches. Overall, the concentrations of N and P in all organs showed a positive relationship, and were significantly correlated in branches (P<0.01). Further, there were significant differences in the stoichiometric characteristics of different organs of T. grandis. The C/N ratios of roots and branches were significantly higher than those of leaves, the C/P ratio of roots was significantly higher than those of branches and leaves, and stoichiometric homoeostasis of P (HP) and (HN/P) was found in T. grandis. In addition, The N/P ratio (HN/P =20.00) had a higher degree of stoichiometric homoeostasis than P concentration (HP =11.76). 【Conclusion】 The C, N, P ratios of T. grandis did not differ with age, but those of organs did. The growth of T. grandis was mostly limited by soil N, therefore, fertilization may thus promote the growth of T. grandis at all growing stages.

Key words

Torreya grandis forest / age / root / branch / leaf / stoichiometry / stoichiometric homoeostasis

Cite this article

Download Citations
YUAN Yanan , LI Zhengca , WANG Bin , et al . Ecological stoichiometry in leaves, branches and roots of Torreya grandis with different forest ages and its stoichiometric homoeostasis[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(6): 135-142 https://doi.org/10.12302/j.issn.1000-2006.202003057

References

[1]
贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34(1):2-6.
HE J S, HAN X G. Ecological stoichiometry: searching for unifying principles from individuals to ecosystems[J]. Chin J Plant Ecol, 2010, 34(1):2-6. DOI: 10.3773/j.issn.1005-264x.2010.01.002.
[2]
罗芊芊, 周志春, 邓宗付, 等. 南方红豆杉天然居群叶片的表型性状和氮磷化学计量特征的变异规律[J]. 植物资源与环境学报, 2021, 30(1):27-35.
LUO Q Q, ZHOU Z C, DENG Z F, et al. Variation law of phenotypic traits and nitrogen and phosphorus stoichiometric characteristics of leaf of natural populations of Taxus wallichiana var. mairei[J]. J Plant Resour Environ, 2021, 30(1):27-35.DOI: 10.3969 /j.issn.1674-7895.2021.01.04.
[3]
JEYASINGH P D, WEIDER L J, STERNER R W. Genetically-based trade-offs in response to stoichiometric food quality influence competition in a keystone aquatic herbivore[J]. Ecology Letters, 2009, 12(11):1229-1237. DOI: 10.1111/j.1461-0248.2009.01368.x.
[4]
李红林, 贡璐, 洪毅. 克里雅绿洲旱生芦苇根茎叶C、N、P化学计量特征的季节变化[J]. 生态学报, 2016, 36(20):6547-6555.
LI H L, GONG L, HONG Y. Seasonal variations in C,N,and P stoichiometry of roots,stems,and leaves of Phragmites australis in the Keriya Oasis,Xinjiang,China[J]. Acta Ecol Sin, 2016, 36(20):6547-6555.
[5]
SARDANS J, RIVAS-UBACH A, PEÑUELAS J. Factors affecting nutrient concentration and stoichiometry of forest trees in Catalonia (NE Spain)[J]. For Ecol Manag, 2011, 262(11):2024-2034.DOI: 10.1016/j.foreco.2011.08.019.
[6]
史军辉, 马学喜, 刘茂秀, 等. (胡杨Populus euphratica)枝叶根化学计量特征[J]. 中国沙漠, 2017, 37(1):109-115.
SHI J H, MA X X, LIU M X, et al. Stoichiometric characteristics of branch,leaf,root in Populus euphratica with different forest age[J]. J Desert Res, 2017, 37(1):109-115.
[7]
张婷婷, 刘文耀, 黄俊彪, 等. 植物生态化学计量内稳性特征[J]. 广西植物, 2019, 39(5):701-712.
ZHANG T T, LIU W Y, HUANG J B, et al. Characteristics of plant ecological stoichiometry homeostasis[J]. Guihaia, 2019, 39(5):701-712.
[8]
刘超, 王洋, 王楠, 等. 陆地生态系统植被氮磷化学计量研究进展[J]. 植物生态学报, 2012, 36(11):1205-1216.
LIU C, WANG Y, WANG N, et al. Advances research in plant nitrogen,phosphorus and their stoichiometry in terrestrial ecosystems:a review[J]. Chin J Plant Ecol, 2012, 36(11):1205-1216.
[9]
周鹏, 耿燕, 马文红, 等. 温带草地主要优势植物不同器官间功能性状的关联[J]. 植物生态学报, 2010, 34(1):7-16.
Abstract
理解植物各器官间功能性状的关联, 有助于确定控制功能性状的内在机制以及性状间的比例关系。基于内蒙古温带草地19个地点、42种优势草本植物的野外观测, 分析了叶片、茎、生殖器官、细根和粗根间功能性状(N、P含量、N:P、比叶面积、比根长以及叶片和细根的组织密度)的关联。主要结果如下: 在种群和物种水平上, 各器官的N和P含量都显著正相关, 比叶面积与叶片N、P含量和组织密度在种群水平上显著负相关, 而在物种水平上没有显著的相关关系; 而比根长仅在种群水平上与细根的组织密度显著负相关。N、P含量以及N:P在各器官之间一致呈显著正相关, 而比叶面积和比根长没有显著的相关关系。叶片和细根的组织密度在种群水平上显著负相关, 而在物种水平上没有显著的相关关系。非禾草比禾草相应器官(除茎外)的N、P含量高, 但二者茎的N、P含量没有显著的差异; 豆科植物比非豆科植物相应器官的N含量高, 而P含量没有显著的差异。
ZHOU P, GENG Y, MA W H, et al. Linkages of functional traits among plant organs in the dominant species of the Inner Mongolia grassland,China[J]. Chin J Plant Ecol, 2010, 34(1):7-16.
<em>Aims</em> The temperate grasslands in Inner Mongolia, representing a great diversity in vegetation types (desert steppe, typical steppe and meadow steppe) and function groups (grass/herb, legume/non-legume), are ideal places to test the hypothesized functional trait relationships among plant organs. Our main objective in this study was to test whether plant functional traits vary in a coordinated fashion both within and across organs. <em>Methods</em> Based on the field observation during July and August in both 2006 and 2007, we measured suites of ecophysiological traits of 42 grassland species from 19 sites in Inner Mongolia. The longitude of the study region ranges from 112.82&deg; to 120.12&deg; (E), and the latitude ranges from 41.76&deg; to 49.89&deg; (N). N and P concentrations, N:P ratios of leaves, stems, reproductive structures, fine roots (diameter < 1 mm) and coarse roots (diameter > 1 mm) as well as tissue density of leaf and fine root and specific leaf area/specific root length were determined. <em>Important findings</em> At both population and interspecific level, N and P concentrations were positively correlated within each organ. Specific leaf area was negatively correlated with leaf N and P concentrations and tissue density at the population level but not at the interspecific level. Specific root length was negatively related to fine root tissue density at population level. Plants with low leaf or fine root tissue density had leaves or fine roots with high N concentrations and large specific leaf area or specific root length. N and P concentrations as well as N: P ratios were also consistently correlated across all organs, but no correlation between specific leaf area and specific root length was observed. At the population level there existed a weak negative correlation between leaf and fine root tissue density while at interspecific level this relationship disappeared. Grasses had lower N and P concentrations than herbs in leaves, reproductive structures and roots, but not in stems. Legumes had higher N concentrations than non-legumes in all organs, but they showed no significant differences in P concentrations.
[10]
原雅楠, 李正才, 王斌, 等. 不同品种榧树针叶-土壤C、N、P生态化学计量特征研究[J]. 林业科学研究.
YUAN Y N, LI Z C, WANG B, et al. Stoichiometric characteristics of C, N and P in leaves of Torreya grandis varieties and soils[J]. Forest Research. DOI: 10.13275/j.cnki.lykxyj.2020.06.006.
[11]
江波, 周先容, 尚进, 等. 中国特有植物巴山榧树的种群结构与动态[J]. 生态学报, 2018, 38(3):1016-1027.
JIANG B, ZHOU X R, SHANG J, et al. Population structure and dynamics of Torreya fargesii Franch:a plant endemic to China[J]. Acta Ecol Sin, 2018, 38(3):1016-1027.
[12]
程晓建, 黎章矩, 喻卫武, 等. 榧树的资源分布与生态习性[J]. 浙江农林大学学报, 2007,(4):383-388.
CHENG X J, LI Z J, YU W W, et al. Distribution and ecological characteristics of Torreya grandis in China[J]. J Zhejiang For Coll, 2007,(4):383-388.
[13]
陈红星, 张苏炯, 张国安, 等. 磐安榧树不同类型种实性状比较研究[J]. 浙江林业科技, 2018, 38(6):19-28.
CHEN H X, ZHANG S J, ZHANG G A, et al. Comparison on seed traits of different natural types of Torreya grandis in Pan’an[J]. J Zhejiang For Sci Technol, 2018, 38(6):19-28.
[14]
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
LU R K. Analytical methods of soil agricultural chemistry[M]. Beijing: China Agriculture Scientech Press, 2000.
[15]
STERNER R W, ELSER J J. Ecological stoichiometry: the biology of elements from molecules to the biosphere [M]. New Jersey: Princeton University Press, 2002.
[16]
杨梅, 王昌全, 袁大刚, 等. 不同生长期烤烟各器官C、N、P生态化学计量学特征[J]. 中国生态农业学报, 2015, 23(6):686-693.
YANG M, WANG C Q, YUAN D G, et al. C,N,P stoichiometry traits of different flue-cured tobacco organs at different growth stages[J]. Chin J Eco - Agric, 2015, 23(6):686-693.DOI: 10.13930/j.cnki.cjea.141289.
[17]
陈安娜, 王光军, 陈婵, 等. 亚热带不同林龄杉木林叶-根-土氮磷化学计量特征[J]. 生态学报, 2018, 38(11):4027-4036.
CHEN A N, WANG G J, CHEN C, et al. Variation in the N and P stoichiometry of leaf-root-soil during stand development in a Cunninghamia lanceolata plantation in subtropical China[J]. Acta Ecol Sin, 2018, 38(11):4027-4036.
[18]
姜沛沛, 曹扬, 陈云明, 等. 不同林龄油松(Pinus tabuliformis)人工林植物、凋落物与土壤C、N、P化学计量特征[J]. 生态学报, 2016, 36(19):6188-6197.
JIANG P P, CAO Y, CHEN Y M, et al. Variation of C,N,and P stoichiometry in plant tissue,litter,and soil during stand development in Pinus tabulaeformis plantation[J]. Acta Ecol Sin, 2016, 36(19):6188-6197.
[19]
淑敏, 王东丽, 王凯, 等. 不同林龄樟子松人工林针叶-凋落叶-土壤生态化学计量特征[J]. 水土保持学报, 2018, 32(3):174-179.
SHU M, WANG D L, WANG K, et al. Ecological stoichiometry characteristics of needle leaves-litter-soils in Pinus sylvestris var.mongolica plantations with different forest ages[J]. J Soil Water Conserv, 2018, 32(3):174-179.DOI: 10.13870/j.cnki.stbcxb.2018.03.027.
[20]
崔宁洁, 刘小兵, 张丹桔, 等. 不同林龄马尾松(Pinus massoniana)人工林碳氮磷分配格局及化学计量特征[J]. 生态环境学报, 2014, 23(2):188-195.
CUI N J, LIU X B, ZHANG D J, et al. The distribution pattern of carbon,nitrogen and phosphorus and the stoichiometry characteristics of Pinus massoniana plantation in different ages[J]. Ecol Environ Sci, 2014, 23(2):188-195.DOI: 10.16258/j.cnki.1674-5906.2014.02.023.
[21]
冀盼盼, 张健飞, 张玉珍, 等. 不同林龄华北落叶松人工林生态化学计量特征[J]. 南京林业大学学报(自然科学版), 2020, 44(3):126-132.
JI P P, ZHANG J F, ZHANG Y Z, et al. Ecological stoichiometry characteristics of Larix principis-rupprechtii plantations at different ages[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(3):126-132.DOI: 10.3969/j.issn.1000-2006.201811032.
[22]
曾凡鹏, 迟光宇, 陈欣, 等. 辽东山区不同林龄落叶松人工林土壤-根系C∶N∶P生态化学计量特征[J]. 生态学杂志, 2016, 35(7):1819-1825.
ZENG F P, CHI G Y, CHEN X, et al. The stoichiometric characteristics of C,N and P in soil and root of larch (Larix spp.) plantation at different stand ages in mountainous region of eastern Liaoning Province,China[J]. Chin J Ecol, 2016, 35(7):1819-1825.DOI: 10.13292/j.1000-4890.201607.025.
[23]
MAKINO W, COTNER J B, STERNER R W, et al. Are bacteria more like plants or animals?Growth rate and resource dependence of bacterial C:N stoichiometry[J]. Funct Ecol, 2003, 17(1):121-130.DOI: 10.1046/j.1365-2435.2003.00712.x.
[24]
阎恩荣, 王希华, 郭明, 等. 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C∶N∶P化学计量特征[J]. 植物生态学报, 2010, 34(1):48-57.
Abstract
以浙江天童常绿阔叶林、常绿针叶林和落叶阔叶林为对象, 通过对叶片和凋落物C:N:P比率与N、P重吸收的研究, 揭示3种植被类型N、P养分限制和N、P重吸收的内在联系。结果显示: 1)叶片C:N:P在常绿阔叶林为758:18:1, 在常绿针叶林为678:14:1, 在落叶阔叶林为338:11:1; 凋落物C:N:P在常绿阔叶林为777:13:1, 常绿针叶林为691:14:1, 落叶阔叶林为567:14:1; 2)常绿阔叶林和常绿针叶林叶片与凋落物C:N均显著高于落叶阔叶林; 叶片C:P在常绿阔叶林最高, 常绿针叶林中等, 落叶阔叶林最低, 常绿阔叶林和常绿针叶林凋落物C:P显著高于落叶阔叶林; 叶片N:P比也是常绿阔叶林最高、常绿针叶林次之, 落叶阔叶林最低, 但常绿阔叶林凋落物N:P最低; 3)植被叶片N、P含量间(N为x, P为y)的II类线性回归斜率显著大于1 (p < 0.05), 表明叶片P含量的增加可显著提高叶片N含量; 凋落物N、P含量的回归斜率约等于1, 反映了凋落物中单位P含量与单位N含量间的等速损耗关系; 4)常绿阔叶林N重吸收率显著高于常绿针叶林与落叶阔叶林, 落叶阔叶林P重吸收率显著高于常绿阔叶林和常绿针叶林。虽然植被的N:P指示常绿阔叶林受P限制, 落叶阔叶林受N限制, 常绿针叶林受N、P的共同限制, 但是N、P重吸收研究结果表明: 受N素限制的常绿阔叶林具有高的N重吸收率, 受P限制的落叶阔叶林并不具有高的P重吸收率。可见, 较高的N、P养分转移率可能不是植物对N、P养分胁迫的一种重要适应机制, 是物种固有的特征。
YAN E R, WANG X H, GUO M, et al. C∶N∶P stoichiometry across evergreen broad-leaved forests,evergreen coniferous forests and deciduous broad-leaved forests in the Tiantong region,Zhejiang Province,Eastern China[J]. Chin J Plant Ecol, 2010, 34(1):48-57.DOI: 10.3773/j.issn.1005-264x.2010.01.008.
[25]
ELSER J J, FAGAN W F, DENNO R F, et al. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000, 408(6812):578-580.DOI: 10.1038/35046058.
[26]
TESSIER J T, RAYNAL D J. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation[J]. J Appl Ecol, 2003, 40(3):523-534.DOI: 10.1046/j.1365-2664.2003.00820.x.
[27]
GÜSEWELL S. N:P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2):243-266. DOI: 10.1111/j.1469-8137.2004.01192.x.
[28]
周磊, 吴慧, 王树力. 不同林分红皮云杉针叶养分含量及生态化学计量特征研究[J]. 植物资源与环境学报, 2020, 29(3):19-25+33.
ZHOU L, WU H, WANG S L. Study on nutrient contents and ecological stoichiometric characteristics in needles of Picea koraiensis in different stands[J]. J Plant Resour Environ, 2020, 29(3):19-25+33. DOI: 10.3969/j.issn.1674-7895.2020.03.03.
[29]
邓浩俊, 陈爱民, 严思维, 等. 不同林龄新银合欢重吸收率及其C∶N∶P化学计量特征[J]. 应用与环境生物学报, 2015, 21(3):522-527.
DENG H J, CHEN A M, YAN S W, et al. Nutrient resorption efficiency and C∶N stoichiometry in different ages of Leucaena leucocephala[J]. Chin J Appl Environ Biol, 2015, 21(3):522-527.
[30]
李合生. 现代植物生理学[M]. 北京: 高等教育出版社, 2002.
LI H S. Modern plant physiology[M]. Beijing: Higher Education Press, 2002.
[31]
马飞, 徐婷婷, 刘吉利, 等. 不同种源中间锦鸡儿碳氮磷化学计量特征研究[J]. 西北植物学报, 2017, 37(7):1381-1389.
MA F, XU T T, LIU J L, et al. Variations in carbon,nitrogen and phosphorus stoichiometry of Caragana liouana originated from nine provenances in a common garden[J]. Acta Bot Boreali-Occidentalia Sin, 2017, 37(7):1381-1389.
[32]
王晶苑, 王绍强, 李纫兰, 等. 中国四种森林类型主要优势植物的C∶N∶P化学计量学特征[J]. 植物生态学报, 2011, 35(6):587-595.
WANG J Y, WANG S Q, LI R L, et al. C∶N∶P stoichiometric characteristics of four forest types’ dominant tree species in China[J]. Chin J Plant Ecol, 2011, 35(6):587-595.
[33]
孙雪娇, 常顺利, 宋成程, 等. 雪岭云杉不同器官N、P、K化学计量特征随生长阶段的变化[J]. 生态学杂志, 2018, 37(5):1291-1298.
SUN X J, CHANG S L, SONG C C, et al. Age-related N,P,and K stoichiometry in different organs of Picea schrenkiana[J]. Chin J Ecol, 2018, 37(5):1291-1298.DOI: 10.13292/j.1000-4890.201805.015.
[34]
柏方敏, 田大伦, 方晰, 等. 洞庭湖西岸区防护林土壤和植物营养元素含量特征[J]. 生态学报, 2010, 30(21):5832-5842.
BAI F M, TIAN D L, FANG X, et al. Soil and plant nutrient status of protective forests in western bank of Dongting Lake[J]. Acta Ecol Sin, 2010, 30(21):5832-5842.
[35]
皮发剑, 舒利贤, 喻理飞, 等. 黔中喀斯特10种优势树种根茎叶化学计量特征及其关联性[J]. 生态环境学报, 2017, 26(4):628-634.
PI F J, SHU L X, YU L F, et al. Study on ecological stoichiometry characteristics and correlation of plants within different organs of 10 dominant tree species in Karst region of central Guizhou[J]. Ecol Environ Sci, 2017, 26(4):628-634.DOI: 10.16258/j.cnki.1674-5906.2017.04.012.
[36]
宋西娟, 时德瑞, 陈江平, 等. 香榧的栽培技术与效益分析[J]. 农业与技术, 2016, 36(8):114-115.
SONG X J, SHI D R, CHEN J P, et al. Cultivation techniques and benefit analysis of Torreya grandis ‘Merrillii’[J]. Agric Technol, 2016, 36(8):114-115.
[37]
贺合亮, 阳小成, 李丹丹, 等. 青藏高原东部窄叶鲜卑花碳、氮、磷化学计量特征[J]. 植物生态学报, 2017, 41(1):126-135.
Abstract
为了探究青藏高原东部窄叶鲜卑花(Sibiraea angustata)灌木不同器官碳(C)、氮(N)、磷(P)含量的分配格局及其生态化学计量特征, 该文采用分层随机抽样方法布设样地, 选择16个窄叶鲜卑花灌丛样地, 分别采集窄叶鲜卑花灌木根、茎、叶、当年枝和果等植物器官样品, 并分析样品C、N、P含量及其计量比。结果表明: C、N、P在不同器官中的含量分别表现为茎&#x0003E;当年枝&#x0003E;果&#x0003E;根&#x0003E;叶; 叶&#x0003E;果&#x0003E;当年枝&#x0003E;茎&#x0003E;根; 果&#x0003E;叶&#x0003E;当年枝&#x0003E;根&#x0003E;茎。窄叶鲜卑花各器官中C含量相对稳定, N、P含量变异系数较大, 在根部的变异系数最大。在不同器官中N:P的范围为7.12-12.41, 其值变化不大, N:P变异系数的最小值在当年枝中, 说明N:P在当年枝中的内稳性较高。在该灌木植物体中C与N之间、C与P之间呈极显著的负相关关系, C对N、P具有稀释作用; N与P呈极显著正相关关系, N与P间具有较好的耦合协同性。分析发现: 窄叶鲜卑花不同器官C、N、P化学计量特征在一定程度上符合内稳态理论和生长速率理论, 其元素分配与器官所执行的功能密切相关; 同时指出在物种水平上应当谨慎使用生态化学计量比来判断养分的限制情况。
HE H L, YANG X C, LI D D, et al. Stoichiometric characteristics of carbon, nitrogen and phosphorus of Sibiraea angustata shrub on the eastern Qinghai-Xizang Plateau[J]. Chin J Plant Ecol, 2017, 41(1) 126-135.
[38]
YANG Y, LIU B R, AN S S. Ecological stoichiometry in leaves,roots,litters and soil among different plant communities in a desertified region of northern China[J]. CATENA, 2018, 166:328-338.DOI: 10.1016/j.catena.2018.04.018.
[39]
陈美玲, 崔君滕, 邓蕾, 等. 黄土高原两种针叶树种不同器官水碳氮磷分配格局及其生态化学计量特征[J]. 地球环境学报, 2018, 9(1):54-63.
CHEN M L, CUI J T, DENG L, et al. Distribution patterns and ecological stoichiometry of water,carbon,nitrogen and phosphorus in different organs of two conifer species on the Loess Plateau[J]. J Earth Environ, 2018, 9(1):54-63.
[40]
PERSSON J, FINK P, GOTO A, et al. To be or not to be what you eat:regulation of stoichiometric homeostasis among autotrophs and heterotrophs[J]. Oikos, 2010, 119(5):741-751.DOI: 10.1111/j.1600-0706.2009.18545.x.
[41]
钟春柳, 黄义雄, 曹春福, 等. 不同海岸梯度下木麻黄防护林生态化学计量特征[J]. 亚热带资源与环境学报, 2017, 12(2):22-29,37.
ZHONG C L, HUANG Y X, CAO C F, et al. Responses of element stoichiometry characteristics of Casuarina equisetifolia to distance from the coastline[J]. J Subtrop Resour Environ, 2017, 12(2):22-29,37.DOI: 10.19687/j.cnki.1673-7105.2017.02.003.
[42]
CHEN Y H, HAN W X, TANG L Y, et al. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate,soil and plant growth form[J]. Ecography, 2013, 36(2):178-184.DOI: 10.1111/j.1600-0587.2011.06833.x.
[43]
WANG J N, WANG J Y, WANG L, et al. Does stoichiometric homeostasis differ among tree organs and with tree age?[J]. For Ecol Manag, 2019, 453:117637.DOI: 10.1016/j.foreco.2019.117637.
[44]
YU Q, ELSER J J, HE N, et al. Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland[J]. Oecologia, 2011, 166(1):1-10.DOI: 10.1007/s00442-010-1902-z.

RIGHTS & PERMISSIONS

Copyright reserved © 2021.
PDF(2028 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/