Predicting crown width for Larix gmelinii based on linear quantiles groups

WANG Junjie, JIANG Lichun

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (5) : 161-170.

PDF(2257 KB)
PDF(2257 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (5) : 161-170. DOI: 10.12302/j.issn.1000-2006.202003088

Predicting crown width for Larix gmelinii based on linear quantiles groups

Author information +
History +

Abstract

【Objective】 Linear quantile regression and quantile groups were used in this study to model and predict crown width, which provides a valuable method for accurately simulating and predicting crown growth. 【Method】 Data in this study were collected from the natural forests of Larix gmelinii of Greater Khingan Mountains. Linear regression and quantile regression were used to build the basic and multivariate models of crown width. Prediction effects of seven quantiles groups were compared, namely three quantiles groups (τ=0.1, 0.5, 0.9 and τ=0.3, 0.5, 0.7), five quantiles groups (τ=0.1, 0.3, 0.5, 0.7, 0.9 and τ=0.3, 0.4, 0.5, 0.6, 0.7), seven quantiles groups (τ=0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9 and τ=0.1, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9), and nine quantiles groups (τ=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). Effects of four sampling methods (random sampling, largest DBH tree selection, mean DBH tree selection and smallest DBH tree selection) and nine sampling sizes (1-9 trees per plot) on prediction accuracy were analyzed. K-fold cross validation was used to compare the prediction effects of linear regression, optimal quantile regression and optimal quantile groups. 【Result】 Linear regression and quantile regression fit the crown width models. The fitting results of the median regressions were similar to those of the linear regressions and were the best of all quantiles. The fitting and validation results of the multivariate model and quantile regressions were better than those of the basic model. Crown width was positively correlated with DBH and average tree height (site quality) and negatively correlated with height under banch (tree size) and basal area of larch (competition). Quantile groups could improve the predictive ability of the model. The seven quantile groups showed little difference. The three quantile groups (τ=0.3, 0.5, 0.7) had the best prediction ability. For the practical application of the basic and multivariate quantile groups, the optimal sampling design was to select the largest trees. A recommendation was to select six sample trees for each plot.【Conclusion】 Crown width models based on linear quantile groups can improve the prediction accuracy. A recommendation is to use three quartile groups and a sampling design of the six largest trees to predict crown width.

Key words

crown width prediction / quantile regression / linear quantile groups / sample method / Larix gmelinii

Cite this article

Download Citations
WANG Junjie , JIANG Lichun. Predicting crown width for Larix gmelinii based on linear quantiles groups[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(5): 161-170 https://doi.org/10.12302/j.issn.1000-2006.202003088

References

[1]
BRAGG D C. A local basal area adjustment for crown width prediction[J]. North J Appl For, 2001, 18(1):22-28.DOI: 10.1093/njaf/18.1.22.
[2]
FU L Y, SUN H, SHARMA R P, et al. Nonlinear mixed-effects crown width models for individual trees of Chinese fir (Cunninghamia lanceolata) in south-central China[J]. For Ecol Manag, 2013, 302:210-220.DOI: 10.1016/j.foreco.2013.03.036.
[3]
SATTLER D F, LEMAY V. A system of nonlinear simultaneous equations for crown length and crown radius for the forest dynamics model SORTIE-ND[J]. Can J For Res, 2011, 41(8):1567-1576.DOI: 10.1139/x11-078.
[4]
KRAJICEK J E, BRINKMAN K A, GINGRICH S F. Crown competition: a measure of density[J]. Forest Science, 1961, 7(1):35-42.
[5]
YANG Y Q, HUANG S. Effects of competition and climate variables on modelling height to live crown for three boreal tree species in Alberta,Canada[J]. Eur J For Res, 2018, 137(2):153-167.DOI: 10.1007/s10342-017-1095-7.
[6]
BARBIER N, COUTERON P, PROISY C, et al. The variation of apparent crown size and canopy heterogeneity across lowland Amazonian forests[J]. Glob Ecol Biogeogr, 2010, 19(1):72-84.DOI: 10.1111/j.1466-8238.2009.00493.x.
[7]
YANG Y Q, HUANG S. Allometric modelling of crown width for white spruce by fixed-and mixed-effects models[J]. For Chron, 2017, 93(2):138-147.DOI: 10.5558/tfc2017-020.
[8]
CARVALHO J P, PARRESOL B R. Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.)[J]. For Ecol Manag, 2003, 179(1/2/3):269-276.DOI: 10.1016/S0378-1127(02)00549-2.
[9]
JIANG L C, LIU R L. Segmented taper equations with crown ratio and stand density for Dahurian larch (Larix gmelinii) in Northeastern China[J]. J For Res, 2011, 22(3):347-352. DOI: 10.1007/s11676-011-0178-4.
[10]
GONZALEZ-BENECKE C A, GEZAN S A, SAMUELSON L J, et al. Estimating Pinus palustris tree diameter and stem volume from tree height, crown area and stand-level parameters[J]. J For Res, 2014, 25(1):43-52. DOI: 10.1007/s11676-014-0427-4.
[11]
CANHAM C D, COATES K D, BARTEMUCCI P, et al. Measurement and modeling of spatially explicit variation in light transmission through interior cedar-hemlock forests of British Columbia[J]. Can J For Res, 1999, 29(11):1775-1783.DOI: 10.1139/x99-151.
[12]
RUSSELL M B, WEISKITTEL A R. Maximum and largest crown width equations for 15 tree species in Maine[J]. North J Appl For, 2011, 28(2):84-91. DOI: 10.1093/njaf/28.2.84.
[13]
FU L Y, SHARMA R P, HAO K J, et al. A generalized interregional nonlinear mixed-effects crown width model for prince rupprecht larch in northern China[J]. For Ecol Manag, 2017, 389:364-373.DOI: 10.1016/j.foreco.2016.12.034.
[14]
RAPTIS D, KAZANA V, KAZAKLIS A, et al. A crown width-diameter model for natural even-aged black pine forest management[J]. Forests, 2018, 9(10):610.DOI: 10.3390/f9100610.
[15]
KOENKER R, BASSETT G. Regression quantiles[J]. Econometrica, 1978, 46(1):33.DOI: 10.2307/1913643.
[16]
ZHANG L J, BI H Q, GOVE J H, et al. A comparison of alternative methods for estimating the self-thinning boundary line[J]. Can J For Res, 2005, 35(6):1507-1514.DOI: 10.1139/x05-070.
[17]
MEHTÄTALO L, GREGOIRE T G, BURKHART H E. Comparing strategies for modeling tree diameter percentiles from remeasured plots[J]. Environmetrics, 2008, 19(5):529-548.DOI: 10.1002/env.896.
[18]
ZANG H, LEI X D, ZENG W S. Height-diameter equations for larch plantations in northern and northeastern China:a comparison of the mixed-effects,quantile regression and generalized additive models[J]. Forestry (Lond), 2016, 89(4):434-445.DOI: 10.1093/forestry/cpw022.
[19]
田德超, 李凤日, 董利虎. 依据分位数回归建立的长白落叶松潜在最大冠幅预测模型[J]. 东北林业大学学报, 2019, 47(8):41-46.
TIAN D C, LI F R, DONG L H. Potential maximum crown width prediction model of Larix olgensis by quantile regression[J]. J Northeast For Univ, 2019, 47(8):41-46.DOI: 10.13759/j.cnki.dlxb.2019.08.008.
[20]
辛士冬, 姜立春. 利用分位数回归模拟人工樟子松树干干形[J]. 北京林业大学学报, 2020, 42(2):1-8.
XIN S D, JIANG L C. Modeling stem taper profile for Pinus sylvestris plantations using nonlinear quantile regression[J]. J Beijing For Univ, 2020, 42(2):1-8
[21]
BOHORA S B, CAO Q V. Prediction of tree diameter growth using quantile regression and mixed-effects models[J]. For Ecol Manag, 2014, 319(5):62-66. DOI: 10.1016/j.foreco.2014.02.006.
[22]
CAO Q V, WANG J. Evaluation of methods for calibrating a tree taper equation[J]. For Sci, 2015, 61(2):213-219. DOI: 10.5849/forsci.14-008.
[23]
ÖZÇELIK R, DIAMANTOPOULOU M J, TRINCADO G. Evaluation of potential modeling approaches for Scots pine stem diameter prediction in north-eastern Turkey[J]. Comput Electron Agric, 2019, 162:773-782.DOI: 10.1016/j.compag.2019.05.033.
[24]
ÖZÇELIK R, CAO Q V, TRINCADO G, et al. Predicting tree height from tree diameter and dominant height using mixed-effects and quantile regression models for two species in Turkey[J]. For Ecol Manag, 2018, 419/420:240-248.DOI: 10.1016/j.foreco.2018.03.051.
[25]
雷相东, 张则路, 陈晓光. 长白落叶松等几个树种冠幅预测模型的研究[J]. 北京林业大学学报, 2006, 28(6):75-79.
LEI X D, ZHANG Z L, CHEN X G. Crown-width prediction models for several tree species including Larix olgensis in northeastern China[J]. J Beijing For Univ, 2006, 28(6):75-79.DOI: 10.3321/j.issn:1000-1522.2006.06.013.
[26]
马岩岩, 姜立春. 基于非线性分位数回归的落叶松树干削度方程[J]. 林业科学, 2019, 55(10):68-75.
MA Y Y, JIANG L C. Stem taper function for Larix gmelinii based on nonlinear quantile regression[J]. Sci Silvae Sin, 2019, 55(10):68-75.
[27]
YANG Y Q, HUANG S. Suitability of five cross validation methods for performance evaluation of nonlinear mixed-effects forest models: a case study[J]. Forestry (Lond), 2014, 87(5):654-662.DOI: 10.1093/forestry/cpu025.
[28]
BECHTOLD W A. Largest-crown-width prediction models for 53 species in the western United States[J]. West J Appl For, 2004, 19(4):245-251.DOI: 10.1093/wjaf/19.4.245.
[29]
SHARMA R P, VACEK Z, VACEK S. Individual tree crown width models for Norway spruce and European beech in Czech Republic[J]. For Ecol Manag, 2016, 366:208-220.DOI: 10.1016/j.foreco.2016.01.040.
[30]
SHARMA R P, BÍLEK L, VACEK Z, et al. Modelling crown width-diameter relationship for Scots pine in the central Europe[J]. Trees, 2017, 31(6):1875-1889.DOI: 10.1007/s00468-017-1593-8.
[31]
FU L Y, ZHANG H R, SHARMA R P, et al. A generalized nonlinear mixed-effects height to crown base model for Mongolian oak in northeast China[J]. For Ecol Manag, 2017, 384:34-43.DOI: 10.1016/j.foreco.2016.09.012.
[32]
CALAMA R, MONTERO G. Interregional nonlinear height-diameter model with random coefficients for stone pine in Spain[J]. Can J For Res, 2004, 34(1):150-163.DOI: 10.1139/x03-199.

RIGHTS & PERMISSIONS

Copyright reserved © 2021.
PDF(2257 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/