JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (4): 143-150.doi: 10.12302/j.issn.1000-2006.202004003
Previous Articles Next Articles
ZHU Xianliang(), ZHOU Changpin, JIA Cuirong, WENG Qijie, LI Fagen*()
Received:
2020-04-04
Accepted:
2020-09-26
Online:
2021-07-30
Published:
2021-07-30
Contact:
LI Fagen
E-mail:1099418037@qq.com;lifagen@caf.ac.cn
CLC Number:
ZHU Xianliang, ZHOU Changpin, JIA Cuirong, WENG Qijie, LI Fagen. Association of SNP loci and candidate genes for growth and wood density in Eucalyptus urophylla × E. tereticornis[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(4): 143-150.
Table 1
Parameters of experimental population phenotypic"
性状traits | H/m | D/cm | ρ /(g·cm-3) |
---|---|---|---|
总体平均值±标准误population mean ± SE | 19.73±0.12 | 15.62±0.15 | 0.504 86±0.001 36 |
变异范围range | 7.50~24.70 | 6.20~26.00 | 0.310 00~0.580 00 |
极低个体平均值mean of extreme low individuals | 12.42*** | 9.40*** | 0.422 40*** |
极高个体平均值mean of extreme high individuals | 23.82*** | 23.48*** | 0.565 98*** |
偏度kurtosis | -0.92 | 0.07 | -1.00 |
峰度skewness | 0.21 | -0.74 | 1.71 |
变异系数/% coefficient of variation | 17.38 | 26.19 | 7.51 |
Table 3
Statistics of GBS data of each sample"
无性系号 clones No. | 原始序列数 raw reads | 高质量序列数 clean reads | Q30/% | GC占比/% GC rate | 测序覆盖度 average depth | 比对率/% percentage of mapped reads |
---|---|---|---|---|---|---|
244 | 6 747 598 | 6 284 629 | 89.9 | 41.5 | 1.27 | 97.5 |
269 | 7 238 380 | 6 696 361 | 90.0 | 41.5 | 1.36 | 97.4 |
414 | 7 451 706 | 6 361 698 | 86.7 | 41.8 | 1.37 | 96.6 |
436 | 7 339 146 | 6 788 388 | 90.8 | 41.7 | 1.37 | 97.3 |
446 | 5 568 416 | 5 161 141 | 90.5 | 40.3 | 1.09 | 97.8 |
453 | 8 922 734 | 8 186 482 | 88.7 | 41.7 | 1.69 | 97.6 |
503 | 7 973 560 | 7 304 918 | 90.2 | 41.0 | 1.50 | 97.4 |
511 | 6 690 676 | 5 931 829 | 88.1 | 41.9 | 1.21 | 96.8 |
536 | 10 247 840 | 9 331 703 | 88.5 | 42.1 | 1.91 | 97.1 |
542 | 9 133 484 | 8 361 043 | 88.6 | 42.6 | 1.71 | 97.3 |
591 | 14 002 206 | 12 404 893 | 90.3 | 41.8 | 2.69 | 97.7 |
630 | 10 350 070 | 9 126 378 | 90.2 | 42.2 | 1.97 | 97.7 |
676 | 9 337 480 | 8 687 413 | 92.3 | 40.9 | 1.75 | 97.1 |
766 | 6 951 718 | 6 095 388 | 88.7 | 42.1 | 1.29 | 97.3 |
773 | 7 653 990 | 6 731 562 | 88.7 | 42.0 | 1.46 | 97.5 |
818 | 6 837 196 | 5 686 663 | 88.7 | 41.3 | 1.28 | 96.5 |
889 | 6 230 868 | 5 269 415 | 88.4 | 41.5 | 1.14 | 96.4 |
906 | 6 045 060 | 4 966 451 | 85.6 | 42.0 | 1.06 | 96.2 |
931 | 8 831 366 | 8 082 888 | 90.4 | 42.0 | 1.65 | 97.4 |
1034 | 6 275 350 | 5 725 428 | 90.4 | 41.5 | 1.17 | 96.7 |
1037 | 9 039 954 | 8 386 655 | 92.0 | 41.0 | 1.69 | 97.1 |
Table 4
Distribution of associated SNP loci and candidate genes"
染色体号 chromosome No. | 关联SNPs associated SNPs | 候选基因 candidate genes | ||||
---|---|---|---|---|---|---|
H | D | ρ | H | D | ρ | |
1 | 10 | 0 | 0 | 3 | 0 | 0 |
2 | 0 | 10 | 3 | 0 | 1 | 0 |
3 | 1 | 2 | 1 | 0 | 1 | 0 |
4 | 4 | 1 | 1 | 3 | 0 | 1 |
5 | 7 | 2 | 0 | 3 | 0 | 0 |
6 | 17 | 4 | 3 | 11 | 1 | 1 |
7 | 2 | 1 | 11 | 1 | 0 | 9 |
8 | 3 | 0 | 0 | 2 | 0 | 0 |
9 | 13 | 0 | 0 | 5 | 0 | 0 |
10 | 1 | 0 | 0 | 0 | 0 | 0 |
11 | 0 | 2 | 0 | 0 | 1 | 0 |
SCA | 4 | 3 | 1 | 0 | 0 | 0 |
none | 4 | 6 | 2 | - | - | - |
小计subtotal | 66 | 31 | 22 | 28 | 4 | 10 |
总计total | 111a | 40b |
Table 5
Information of highly significant associated SNP loci for each trait"
性状 traits | 标记 loci | P | 染色体 chromosome | SNP位置 SNP position |
---|---|---|---|---|
H | R1_nn_np_2206 | 5.54×10-7 | 1 | 31 185 986 |
H | R2_nn_np_1021 | 8.81×10-7 | 5 | 73 028 798 |
H | R1_nn_np_265 | 6.94×10-7 | 6 | 51 359 043 |
D | R1_lm_ll_1464 | 8.56×10-9 | 2 | 16 463 419 |
D | R2_lm_ll_2467 | 1.83×10-8 | 2 | 36 421 398 |
D | R2_lm_ll_3115 | 2.06×10-8 | 2 | 27 860 410 |
D | R1_lm_ll_435 | 3.10×10-8 | 2 | 21 688 358 |
D | R2_lm_ll_1597 | 3.10×10-8 | 2 | 26 162 008 |
D | R1_lm_ll_2005 | 3.10×10-8 | 2 | 22 047 469 |
D | R2_hk_hk_69 | 4.01×10-7 | 2 | 7 731 971 |
D | R2_lm_ll_1030 | 2.20×10-8 | 7 | 19 329 014 |
D | R1_hk_hk_233 | 3.58×10-7 | 11 | 7 051 289 |
D | R1_hk_hk_24 | 4.10×10-7 | 11 | 2 330 164 |
D | R2_lm_ll_2776 | 2.20×10-8 | none | - |
D | R2_lm_ll_2539 | 2.56×10-8 | none | - |
D | R1_lm_ll_1496 | 3.10×10-8 | none | - |
ρ | R1_nn_np_3087 | 4.46×10-6 | 4 | 32 583 746 |
ρ | R1_nn_np_2972 | 4.46×10-6 | 7 | 48 651 807 |
ρ | R2_lm_ll_2539 | 2.47×10-6 | none | - |
[1] |
HILL K, JOHNSON L. Systematic studies in the eucalypts.7.A revision of the bloodwoods,genus Corymbia (Myrtaceae)[J]. Telopea, 1995, 6(2/3):185-504.DOI: 10.7751/telopea19953017.
doi: 10.7751/telopea19953017 |
[2] |
TURNBULL J W. Eucalypt plantations[J]. New Forests, 1999, 17(1/3):37-52. DOI: 10.1023/a:1006524911242.
doi: 10.1023/a:1006524911242 |
[3] | 王豁然. 桉树生物学概论[M]. 北京: 科学出版社, 2010. |
WANG H R. Chinese appreciation of eucalyptus[M]. Beijing: Science Press, 2010. | |
[4] |
MYBURG A A, GRATTAPAGLIA D, TUSKAN G A, et al. The genome of Eucalyptus grandis[J]. Nature, 2014, 510(7505):356-362.DOI: 10.1038/nature13308.
doi: 10.1038/nature13308 |
[5] |
STACKPOLE D J, VAILLANCOURT R E, AGUIGAR M, et al. Age trends in genetic parameters for growth and wood density in Eucalyptus globulus[J]. Tree Genet Genomes, 2010, 6(2):179-193.DOI: 10.1007/s11295-009-0239-4.
doi: 10.1007/s11295-009-0239-4 |
[6] | 李昌荣, 陈健波, 郭东强, 等. 锯材大花序桉生长和材性的综合指数选择[J]. 南京林业大学学报(自然科学版), 2019, 43(1):1-8. |
LI C R, CHEN J B, GUO D Q, et al. Comprehensive index selection on superior growth and wood properties of Eucalyptus cloeziana for saw timber[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(1):1-8.DOI: 10.3969/j.issn.1000-2006.201805018.
doi: 10.3969/j.issn.1000-2006.201805018 |
|
[7] | 朱显亮, 兰俊, 王建忠, 等. 中大径材尾细桉杂种无性系选择研究[J]. 南京林业大学学报(自然科学版), 2020, 44(2):43-50. |
ZHU X L, LAN J, WANG J Z, et al. Clonal selection of middle/large diameter timber of Eucalyptus urophylla × E.tereticornis hybrid clones[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(2):43-50.DOI: 10.3969/j.issn.1000-2006.201904005.
doi: 10.3969/j.issn.1000-2006.201904005 |
|
[8] |
YANG H Y, WENG Q J, LI F G, et al. Genotypic variation and genotype-by-environment interactions in growth and wood properties in a cloned Eucalyptus urophylla × E.tereticornis family in southern China[J]. For Sci, 2018, 64(3):225-232.DOI: 10.1093/forsci/fxx011.
doi: 10.1093/forsci/fxx011 |
[9] |
LANDER E S. The new genomics:global views of biology[J]. Science, 1996, 274(5287):536-539.DOI: 10.1126/science.274.5287.536.
doi: 10.1126/science.274.5287.536 |
[10] | 周长品, 翁启杰, 甘四明, 等. 应用SNaPshot技术对桉树SNP的检测[J]. 南京林业大学学报(自然科学版), 2018, 42(4):83-88. |
ZHOU C P, WENG Q J, GAN S M, et al. Application of SNaPshot to detect SNP markers in Eucalyptus[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(4):83-88.DOI: 10.3969/issn.1000-2006.2017.05055.
doi: 10.3969/issn.1000-2006.2017.05055 |
|
[11] |
NEALE D B, SAVOLAINEN O. Association genetics of complex traits in conifers[J]. Trends Plant Sci, 2004, 9(7):325-330.DOI: 10.1016/j.tplants.2004.05.006.
doi: 10.1016/j.tplants.2004.05.006 |
[12] | 尚秀华, 张沛健, 谢耀坚, 等. 赤桉抗风和生长性状的SSR关联分析[J]. 南京林业大学学报(自然科学版), 2018, 42(4):97-105. |
SHANG X H, ZHANG P J, XIE Y J, et al. SSR association analysis of Eucalyptus camaldulensis wind resistance and growth traits[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(4):97-105.DOI: 10.3969/j.issn.1000-2006.201711019.
doi: 10.3969/j.issn.1000-2006.201711019 |
|
[13] |
MÜLLER B S F, DE ALMEIDA FILHO J E, LIMA B M, et al. Independent and Joint-GWAS for growth traits in Eucalyptus by assembling genome-wide data for 3373 individuals across four breeding populations[J]. New Phytol, 2019, 221(2):818-833.DOI: 10.1111/nph.15449.
doi: 10.1111/nph.15449 |
[14] |
THUMMA B R, NOLAN M F, EVANS R, et al. Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp.[J]. Genetics, 2005, 171(3):1257-1265.DOI: 10.1534/genetics.105.042028.
doi: 10.1534/genetics.105.042028 |
[15] |
CAPPA E P, EL-KASSABY Y A, GARCIA M N, et al. Impacts of population structure and analytical models in genome-wide asso-ciation studies of complex traits in forest trees:a case study in Eucalyptus globulus[J]. PLoS One, 2013, 8(11):e81267.DOI: 10.1371/journal.pone.0081267.
doi: 10.1371/journal.pone.0081267 |
[16] | 李昌荣. 大花序桉生长和材性遗传变异及SSR关联分析[D]. 北京:中国林业科学研究院, 2017. |
LI C R. Gere Variation and SSR association analyses in growth and wood properties in Eucalyptus cloeziana[D]. Beijing: Chinese Academy of Forestry, 2017. | |
[17] |
DILLON S K, BRAWNER J T, MEDER R, et al. Association genetics in Corymbia citriodora subsp.variegata identifies single nucleotide polymorphisms affecting wood growth and cellulosic pulp yield[J]. New Phytol, 2012, 195(3):596-608.DOI: 10.1111/j.1469-8137.2012.04200.x.
doi: 10.1111/j.1469-8137.2012.04200.x |
[18] |
RESENDE R T, RESENDE M D, SILVA F F, et al. Regional heritability mapping and genome-wide association identify loci for complex growth,wood and disease resistance traits in Eucalyptus[J]. New Phytol, 2017, 213(3):1287-1300.DOI: 10.1111/nph.14266.
doi: 10.1111/nph.14266 |
[19] |
GRATTAPAGLIA D, PLOMION C, KIRST M, et al. Genomics of growth traits in forest trees[J]. Curr Opin Plant Biol, 2009, 12(2):148-156.DOI: 10.1016/j.pbi.2008.12.008.
doi: 10.1016/j.pbi.2008.12.008 |
[20] | 彭仕尧, 徐建民, 李光友, 等. 尾细桉无性系在雷州半岛的生长与遗传分析[J]. 中南林业科技大学学报, 2013, 33(4):23-27. |
PENG S Y, XU J M, LI G Y, et al. Growth and genetic analysis of 42 Eucalyptus urophylla × E.tereticornis clones in Leizhou Peninsula of China[J]. J Central South Univ For Technol, 2013, 33(4):23-27.DOI: 10.14067/j.cnki.1673-923x.2013.04.018.
doi: 10.14067/j.cnki.1673-923x.2013.04.018 |
|
[21] | 甘四明, 李梅, 李发根, 等. 尾叶桉×细叶桉杂种无性系扦插生根和生长性状的研究[J]. 林业科学研究, 2006, 19(2):135-140. |
GAN S M, LI M, LI F G, et al. Analysis on cutting and growth traits of clones of Eucalyptus urophylla × E.tereticornis[J]. For Res, 2006, 19(2):135-140.DOI: 10.3321/j.issn:1001-1498.2006.02.002.
doi: 10.3321/j.issn:1001-1498.2006.02.002 |
|
[22] |
GAN S M, SHI J S, LI M, et al. Moderate-density molecular maps of Eucalyptus urophylla S.T.Blake and E.tereticornis Smith genomes based on RAPD markers[J]. Genetica, 2003, 118(1):59-67.DOI: 10.1023/a:1022966018079.
doi: 10.1023/a:1022966018079 |
[23] |
POLAND J A, BROWN P J, SORRELLS M E, et al. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach[J]. PLoS One, 2012, 7(2):e32253.DOI: 10.1371/journal.pone.0032253.
doi: 10.1371/journal.pone.0032253 |
[24] |
CATCHEN J M, AMORES A, HOHENLOHE P, et al. Stacks:building and genotyping Loci de novo from short-read sequences[J]. G3 (Bethesda), 2011, 1(3):171-182.DOI: 10.1534/g3.111.000240.
doi: 10.1534/g3.111.000240 |
[25] |
LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with Bowtie 2[J]. Nat Methods, 2012, 9(4):357-359.DOI: 10.1038/nmeth.1923.
doi: 10.1038/nmeth.1923 |
[26] |
MCKENNA A, HANNA M, BANKS E, et al. The genome analysis toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Res, 2010, 20(9):1297-1303.DOI: 10.1101/gr.107524.110.
doi: 10.1101/gr.107524.110 |
[27] |
DANECEK P, AUTON A, ABECASIS G, et al. The variant call format and VCFtools[J]. Bioinformatics, 2011, 27(15):2156-2158.DOI: 10.1093/bioinformatics/btr330.
doi: 10.1093/bioinformatics/btr330 |
[28] | 高美玲, 梁晓雪, 刘秀杰, 等. 基于极端个体GBS测序初步定位西瓜果形基因[J]. 分子植物育种, 2020, 18(10):3164-3171. |
GAO M L, LIANG X X, LIU X J, et al. Short-term effects of different pru-ning intensities on poplar growth[J]. J Shandong For Sci Technol, 2020, 18(10):3164-3171.DOI: 10.13271/j.mpb.018.003164.
doi: 10.13271/j.mpb.018.003164 |
|
[29] |
GÖTZ S, GARCÍA-GÓMEZ J M, TEROL J, et al. High-throughput functional annotation and data mining with the Blast2GO suite[J]. Nucleic Acids Res, 2008, 36(10):3420-3435.DOI: 10.1093/nar/gkn176.
doi: 10.1093/nar/gkn176 |
[30] |
CONTRERAS-SOTO R I, MORA F, DE OLIVEIRA M A, et al. A genome-wide association study for agronomic traits in soybean using SNP markers and SNP-based haplotype analysis[J]. PLoS One, 2017, 12(2):e0171105.DOI: 10.1371/journal.pone.0171105.
doi: 10.1371/journal.pone.0171105 |
[31] |
BRADBURY P J, ZHANG Z W, KROON D E, et al. TASSEL:software for association mapping of complex traits in diverse samples[J]. Bioinformatics, 2007, 23(19):2633-2635.DOI: 10.1093/bioinformatics/btm308.
doi: 10.1093/bioinformatics/btm308 |
[32] |
BEGUM H, SPINDEL J E, LALUSIN A, et al. Genome-wide association mapping for yield and other agronomic traits in an elite breeding population of tropical rice (Oryza sativa)[J]. PLoS One, 2015, 10(3):e0119873.DOI: 10.1371/journal.pone.0119873.
doi: 10.1371/journal.pone.0119873 |
[33] |
FREEMAN J S, WHITTOCK S P, POTTS B M, et al. QTL influencing growth and wood properties in Eucalyptus globulus[J]. Tree Genet Genomes, 2009, 5(4):713-722.DOI: 10.1007/s11295-009-0222-0.
doi: 10.1007/s11295-009-0222-0 |
[34] |
GION J M, CAROUCHÉ A, DEWEER S, et al. Comprehensive genetic dissection of wood properties in a widely-grown tropical tree:Eucalyptus[J]. BMC Genomics, 2011, 12:301.DOI: 10.1186/1471-2164-12-301.
doi: 10.1186/1471-2164-12-301 |
[35] |
KULLAN A R, VAN DYK M M, HEFER C A, et al. Genetic dissection of growth,wood basic density and gene expression in interspecific backcrosses of Eucalyptus grandis and E.urophylla[J]. BMC Genet, 2012, 13:60.DOI: 10.1186/1471-2156-13-60.
doi: 10.1186/1471-2156-13-60 |
[36] |
TAKAHASHI T, MATSUHARA S, ABE M, et al. Disruption of a DNA topoisomerase I gene affects morphogenesis in Arabidopsis[J]. Plant Cell, 2002, 14(9):2085-2093.DOI: 10.1105/tpc.001925.
doi: 10.1105/tpc.001925 |
[37] |
LIU X, GAO L, DINH T T, et al. DNA topoisomerase I affects polycomb group protein-mediated epigenetic regulation and plant development by altering nucleosome distribution in Arabidopsis[J]. Plant Cell, 2014, 26(7):2803-2817.DOI: 10.1105/tpc.114.124941.
doi: 10.1105/tpc.114.124941 |
[38] |
ZHANG Y H, ZHENG L L, HONG J H, et al. TOPOISOMERASE1α Acts through two distinct mechanisms to regulate stele and Columella stem cell maintenance[J]. Plant Physiol, 2016, 171(1):483-493.DOI: 10.1104/pp.15.01754.
doi: 10.1104/pp.15.01754 |
[39] | 裴丽丽, 郭玉华, 徐兆师, 等. 植物逆境胁迫相关蛋白激酶的研究进展[J]. 西北植物学报, 2012, 32(5):1052-1061. |
PEI L L, GUO Y H, XU Z S, et al. Research progress on stress-related protein kinases in plants[J]. Acta Bot Boreali-Occidentalia Sin, 2012, 32(5):1052-1061.DOI: 10.3969/j.issn.1000-4025.2012.05.032.
doi: 10.3969/j.issn.1000-4025.2012.05.032 |
|
[40] |
LIN B L, WANG J S, LIU H C, et al. Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana[J]. Cell Stress Chape-rones, 2001, 6(3):201-208.DOI: 10.1379/1466-1268(2001)0060201:gaoths>2.0.co;2.
doi: 10.1379/1466-1268(2001)0060201:gaoths>2.0.co |
[41] |
CHO E K, CHOI Y J. A nuclear-localized HSP70 confers thermoprotective activity and drought-stress tolerance on plants[J]. Biotechnol Lett, 2009, 31(4):597-606.DOI: 10.1007/s10529-008-9880-5.
doi: 10.1007/s10529-008-9880-5 |
[42] |
MONTERO-BARRIENTOS M, HERMOSA R, CARDOZA R E, et al. Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses[J]. J Plant Physiol, 2010, 167(8):659-665.DOI: 10.1016/j.jplph.2009.11.012.
doi: 10.1016/j.jplph.2009.11.012 |
[43] |
THUMMA B R, SOUTHERTON S G, BELL J C, et al. Quantitative trait locus (QTL) analysis of wood quality traits in Eucalyptus nitens[J]. Tree Genet Genomes, 2010, 6(2):305-317.DOI: 10.1007/s11295-009-0250-9.
doi: 10.1007/s11295-009-0250-9 |
[1] | JIAO Zhongyi, TIAN Xueyao, ZHENG Jiwei, WANG Baosong, HE Kaiyue, HE Xudong. Rapid identification and marker development of SNP loci for salt tolerance in shrub willow [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 107-113. |
[2] | ZHANG Yunqi, DONG Ningguang, HAO Yanbin, CHEN Yonghao, ZHANG Junpei, HOU Zhixia, SU Shuchai, WU Jiaqing, QI Jianxun. Nuts’ phenotypic diversity analysis and character evaluation of 109 high-yield walnut individual trees [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 87-96. |
[3] | CHU Chenchen, SUN Mingsheng, WU Yuhan, YAN Zhenyu, LI Ting, FENG Yangfan, GUO Ying, YIN Tongming, XUE Liangjiao. Pan-genome and genomic variation analyses of Populus [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 251-260. |
[4] | SHANG Xiuhua, ZHANG Peijian, XIE Yaojian, LUO Jianzhong, LI Chao,WU Zhihua. SSR association analysis of Eucalyptus camaldulensis wind resistance and growth traits [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(04): 97-105. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||