The community structure and functional analysis of intestinal bacteria in Monochamus alternatus larvae reared indoors

CHEN Hongjian, HAO Dejun, TIAN Min, ZHOU Yang, XIA Xiaohong, ZHAO Xinyi, QIAO Heng, TAN Jiajin

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (3) : 143-151.

PDF(2020 KB)
PDF(2020 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (3) : 143-151. DOI: 10.12302/j.issn.1000-2006.202004009

The community structure and functional analysis of intestinal bacteria in Monochamus alternatus larvae reared indoors

Author information +
History +

Abstract

【Objective】 The aim of this study was to understand the bacterial community structure in the foregut, midgut and hindgut of Monochamus alternatus larvae and to compare the differences in the bacterial diversity and dominant flora among the different intestinal segments to provide a reference for revealing the mechanism of intestinal bacteria when M. alternatus obtains nutrients and overcomes the chemical defense of host plants. 【Method】The gut DNA of five foreguts, midguts and hindguts, repeated three times respectively, of fourth instar larvae of M. alternatus were extracted. The library construction and high-throughput sequencing of the 16S rDNA V3-V4 region of the intestinal bacteria in M. alternatus were performed using Illumina HiSeq techniques. The original sequences were quality controlled and spliced using Trimmomatic software and FLASH software, respectively. The operational taxonomic unit (OTU) clustering of sequences was performed using USEARCH software, the number of OTUs was counted, and Venn diagrams were drawn. The community composition and species richness of each sample were determined at the phylum and genus levels. The alpha and beta diversity were used to reflect the diversity and similarity of the flora in different samples. The functions of the intestinal bacteria in M. alternatus larvae mapped to the KEGG database were predicted using PICRUSt software, and the potential functions of different intestinal bacterial communities were explored. 【Result】A total of 643 404 high-quality sequences were obtained and clustered to 1 614 OTUs with 97% similarity, which were annotated into 35 phyla, 63 classes, 137 orders, 250 families, 554 genera and 844 species. The OTUs were the least abundant in the foregut and were the most abundant in the hindgut. There were similarities and differences in the OTU composition of each segment. Proteobacteria was the most dominant phylum in all segments of the intestine, Gluconobacter was the most dominant genus in the foregut, Serratia was the most dominant genus in the midgut, and Gluconobacter and Serratia were the most dominant genera in the hindgut. The alpha diversity showed that the bacterial communities of the midgut and hindgut were more abundant, whereas the beta diversity showed that the bacterial composition in the three gut segments was different, but was similar in the midgut and hindgut. The bacterial function prediction analysis showed that metabolism was the most abundant function in all the intestinal bacteria, in which carbohydrate metabolism and amino acid metabolism were the main functions, which were concentrated in the midgut and hindgut. 【Conclusion】 There are differences in the bacterial community structures and potential functions of bacteria in different intestinal segments of indoor populations of M. alternatus larvae, which are caused by the differences in the physicochemical properties in different intestinal segments and their digestion functions. Intestinal bacteria and M. alternatus larvae form a symbiotic functional body, which plays an important role in assisting the larvae metabolism, obtaining nutrients and overcoming the chemical defense of host plants. The microbial function in this experiment was based on the prediction results of the PICRUSt software.

Key words

Monochamus alternatus / intestinal bacteria / 16S rDNA / community structure / function prediction

Cite this article

Download Citations
CHEN Hongjian , HAO Dejun , TIAN Min , et al . The community structure and functional analysis of intestinal bacteria in Monochamus alternatus larvae reared indoors[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(3): 143-151 https://doi.org/10.12302/j.issn.1000-2006.202004009

References

[1]
BASSET Y, CIZEK L, CUÉNOUD P, et al. Arthropod diversity in a tropical forest[J]. Science, 2012,338(6113):1481-1484. DOI: 10.1126/science.1226727.
[2]
杨红, 黄勇平. 昆虫微生物组:昆虫健康和适应的守护者[J]. 微生物学报, 2018,58(6):961-963.
YANG H, HUANG Y P. Insect microbiome:as guardians of insect health and adaptation[J]. Acta Microbiol Sin, 2018,58(6):961-963. DOI: 10.13343/j.cnki.wsxb.20186000.
[3]
DICKE M, CUSUMANO A, POELMAN E H. Microbial symbionts of parasitoids[J]. Annu Rev Entomol, 2020,65:171-190. DOI: 10.1146/annurev-ento-011019-024939.
[4]
DILLON R J, DILLON V M. The gut bacteria of insects:nonpathogenic interactions[J]. Annu Rev Entomol, 2004,49:71-92. DOI: 10.1146/annurev.ento.49.061802.123416.
[5]
DOUGLAS A E. The microbial dimension in insect nutritional ecology[J]. Funct Ecol, 2009,23(1):38-47. DOI: 10.1111/j.1365-2435.2008.01442.x.
[6]
COLMAN D R, TOOLSON E C, TAKACS-VESBACH C D. Do diet and taxonomy influence insect gut bacterial communities?[J]. Mol Ecol, 2012,21(20):5124-5137. DOI: 10.1111/j.1365-294x.2012.05752.x.
[7]
ENGEL P, MORAN N A. The gut microbiota of insects-diversity in structure and function[J]. FEMS Microbiol Rev, 2013,37(5):699-735. DOI: 10.1111/1574-6976.12025.
[8]
CEJA-NAVARRO J A, NGUYEN N H, KARAOZ U, et al. Compartmentalized microbial composition,oxygen gradients and nitrogen fixation in the gut of Odontotaenius disjunctus[J]. Isme J, 2014,8(1):6-18. DOI: 10.1038/ismej.2013.134.
[9]
梅承, 范硕, 杨红. 昆虫肠道微生物分离培养策略及研究进展[J]. 微生物学报, 2018,58(6):985-994.
MEI C, FAN S, YANG H. The strategies of isolation of insect gut microorganisms[J]. Acta Microbiol Sin, 2018,58(6):985-994. DOI: 10.13343/j.cnki.wsxb.20180134
[10]
CALDERÓN-CORTÉS N, QUESADA M, WATANABE H, et al. Endogenous plant cell wall digestion:a key mechanism in insect evolution[J]. Annu Rev Ecol Evol Syst, 2012,43(1):45-71. DOI: 10.1146/annurev-ecolsys-110411-160312.
[11]
ZHOU J P, HUANG H Q, MENG K, et al. Molecular and biochemical characterization of a novel xylanase from the symbiotic Sphingobacterium sp.TN19[J]. Appl Microbiol Biotechnol, 2009,85(2):323-333. DOI: 10.1007/s00253-009-2081-x.
[12]
GEIB S M, JIMENEZ-GASCO MDEL M, CARLSON J E, et al. Effect of host tree species on cellulase activity and bacterial community composition in the gut of larval Asian longhorned beetle[J]. Environ Entomol, 2009,38(3):686-699. DOI: 10.1603/022.038.0320.
[13]
RAFFA K F, AUKEMA B H, ERBILGIN N, et al. Interactions among conifer terpenoids and bark beetles across multiple levels of scale:an attempt to understand links between population patterns and physiological processes[J]. Chemical Ecology and Phytochemistry of Forest Ecosystems, 2005,39:79-118. DOI: 10.1016/S0079-9920(05)80005-X.
[14]
ADAMS A S, AYLWARD F O, ADAMS S M, et al. Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism[J]. Appl Environ Microbiol, 2013,79(11):3468-3475. DOI: 10.1128/aem.00068-13.
[15]
BERASATEGUI A, SALEM H, PAETZ C, et al. Gut microbiota of the pine weevil degrades conifer diterpenes and increases insect fitness[J]. Mol Ecol, 2017,26(15):4099-4110. DOI: 10.1111/mec.14186.
[16]
郝德君, 杨剑霞, 戴华国. 松墨天牛化学生态学[J]. 生态学杂志, 2008,27(7):1227-1233.
HAO D J, YANG J X, DAI H G. Research prowess and prospect on chemical ecology of Monochamus alternatus[J]. Chin J Ecol, 2008,27(7):1227-1233.
[17]
叶建仁. 松材线虫病在中国的流行现状、防治技术与对策分析[J]. 林业科学, 2019,55(9):1-10.
YE J R. Epidemic status of pine wilt disease in China and its prevention and control techniques and counter measures[J]. Sci Silvae Sin, 2019,55(9):1-10. DOI: 10.11707/j.1001-7488.20190901.
[18]
LI Y L, ZHENG C Y, LIU K C, et al. Transformation of multi-antibiotic resistant Stenotrophomonas maltophilia with GFP gene to enable tracking its survival on pine trees[J]. Forests, 2019,10(3):231. DOI: 10.3390/f10030231.
[19]
萧刚柔. 中国森林昆虫[M].2版(增订本). 北京: 中国林业出版社, 1992.
XIAO G R. Forest insects of China[M].2nd ed. Beijing: China Forestry Publishing House, 1992.
[20]
HU X, LI M, RAFFA K F, et al. Bacterial communities associated with the pine wilt disease vector Monochamus alternatus (Coleoptera:Cerambycidae) during different larval instars[J]. J Insect Sci, 2017,17(6):115. DOI: 10.1093/jisesa/iex089.
[21]
KIM J M, CHOI M Y, KIM J W, et al. Effects of diet type,developmental stage,and gut compartment in the gut bacterial communities of two Cerambycidae species (Coleoptera)[J]. J Microbiol, 2017,55(1):21-30. DOI: 10.1007/s1227-017-6561-x.
[22]
CHEN H J, HAO D J, WEI Z Q, et al. Bacterial communities associated with the pine wilt disease insect vector Monochamus alternatus (Coleoptera:Cerambycidae) during the larvae and pupae stages[J]. Insects, 2020,11(6):376. DOI: 10.3390/insects11060376.
[23]
陈瑞旭, 王露洁, 林涛, 等. 松墨天牛的人工饲育技术研究[J]. 南京林业大学学报(自然科学版), 2017,41(1):199-202.
CHEN R X, WANG L J, LIN T, et al. Rearing techniques of Monochamus alternatus Hope (Coleoptera:Cerambycidae) on artificial diets[J]. J Nanjing For Univ (Nat Sci Ed), 2017,41(1):199-202. DOI: 10.3969/j.issn.1000-2006.2017.01.031.
[24]
丁森, 王焱, 陆蓝翔, 等. 一株促生抗病的樱花内生细菌的分离、筛选和鉴定[J]. 南京林业大学学报(自然科学版), 2019,62(5):81-88.
DING S, WANG Y, LU L X, et al. Isolation,screening and identification of an endophytic bacteria in Ceresas with resistance to Agrobacterium tumefaciens and phosphorus solubilizing ability[J]. J Nanjing For Univ (Nat Sci Ed), 2019,62(5):81-88. DOI: 10.3969/j.issn.1000-2006.201802023.
[25]
寇晓琳, 谢楠, 吴彩娥, 等. 青钱柳产黄酮类物质真菌的分离与鉴定[J]. 南京林业大学学报(自然科学版), 2020,44(2):26-34.
KOU X L, XIE N, WU C E, et al. Isolation and identification of endophytic fungi from Cyclocarya paliurus (Batal.)Iljinskaja[J]. J Nanjing For Univ (Nat Sci Ed), 2020,44(2):26-34. DOI: 10.3969/j.issn.1000-2006.201812001.
[26]
MAGOC T, SALZBERG S L. Flash:fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011,27(21):2957-2963. DOI: 10.1093/bioinformatics/btr507.
[27]
EDGAR R C. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013,10(10):996-998. DOI: 10.1038/nmeth.2604.
[28]
WANG Q, GARRITY G M, TIEDJE J M, et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Appl Environ Microbiol, 2007,73(16):5261-5267. DOI: 10.1128/aem.00062-07.
[29]
SCHLOSS P D, WESTCOTT S L, RYABIN T, et al. Introducing mothur:open-source,platform-independent,community-supported software for describing and comparing microbial communities[J]. Appl Environ Microbiol, 2009,75(23):7537-7541. DOI: 10.1128/aem.01541-09.
[30]
LANGILLE M G, ZANEVELD J, CAPORASO J G, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nat Biotechnol, 2013,31(9):814-821. DOI: 10.1038/nbt.2676.
[31]
LEMKE T, STINGL U, EGERT M, et al. Physicochemical conditions and microbial activities in the highly alkaline gut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae)[J]. Appl Environ Microbiol, 2003,69(11):6650-6658. DOI: 10.1128/aem.69.11.6650-6658.2003.
[32]
CHAPMAN R F, SIMPSON S J, DOUGLAS A E. The Insects:structure and function.[M]. 5th Ed. Cambridge: Cambridge University Press, 2013.
[33]
东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001.
DONG X Z, CAI M Y. Common bacterial system identification manual[M]. Beijing: Science Press, 2001.
[34]
冯静, 施庆珊, 欧阳友生, 等. 葡糖杆菌属分类及其主要应用的研究进展[J]. 微生物学杂志, 2010,30(2):86-90.
FENG J, SHI Q S, OUYANG Y S, et al. Advance in classification and main application of Gluconobacter[J]. J Microbiol, 2010,30(2):86-90. DOI: 10.3969/j.issn.1005-7021.2010.02.018.
[35]
VICENTE C S, NASCIMENTO F X, ESPADA M, et al. Characterization of bacterial communities associated with the pine sawyer beetle Monochamus galloprovincialis,the insect vector of the pinewood nematode Bursaphelenchus xylophilus[J]. FEMS Microbiol Lett, 2013,347(2):130-139. DOI: 10.1111/1574-6968.12232.
[36]
ZHAO L, MOTA M, VIEIRA P, et al. Interspecific communication between pinewood nematode,its insect vector,and associated microbes[J]. Trends Parasitol, 2014,30(6):299-308. DOI: 10.1016/j.pt.2014.04.007.
[37]
DOUGLAS A E. Multiorganismal insects:diversity and function of resident microorganisms[J]. Annu Rev Entomol, 2015,60(1):17-34. DOI: 10.1146/annurev-ento-010814-020822.
[38]
魏舸, 白亮, 曲爽, 等. 昆虫共生微生物在病虫害和疾病控制上的应用前景[J]. 微生物学报, 2018,58(6):1090-1102.
WEI G, BAI L, QU S, et al. Insect microbiome and their potential application in the insect pest and vector-borne disease control[J]. Acta Microbiol Sin, 2018,58(6):1090-1102.DOI: 10.13343/j.cnki.wsxb.20180028.
[39]
徐丽丽, 郑华英, 解春霞, 等. 管氏肿腿蜂寄生对松墨天牛幼虫体质量和营养物质含量的影响[J]. 江苏林业科技, 2019,46(2):13-16.
XU L L, ZHENG H Y, XIE C X, et al. Effects of parasitization by Sclerodermus guani (Hymenoptera: Bethylidae) on body weight and nutrient content of Monochamus alternatus (Coleoptera:Cerambycidae) larvae[J]. Journal of Jiangsu Forestry Science & Technology, 2019,46(2):13-16. DOI: 10.3969/j.issn.1001-7380.2019.02.004.
[40]
ADAMS L, BOOPATHY R. Isolation and characterization of enteric bacteria from the hindgut of Formosan termite[J]. Bioresour Technol, 2005,96(14):1592-1598. DOI: 10.1016/j.biortech.2004.12.020.
[41]
HOWE M, KEEFOVER-RING K, RAFFA K F. Pine engravers carry bacterial communities whose members reduce concentrations of host monoterpenes with variable degrees of redundancy,specificity,and capability[J]. Environ Entomol, 2018,47(3):638-645. DOI: 10.1093/ee/nvy032.
[42]
胡霞, 傅慧静, 李俊楠, 等. 松墨天牛幼虫肠道纤维素降解细菌的分离与鉴定[J]. 福建农林大学学报(自然科学版), 2018,47(3):322-328.
HU X, FU H J, LI J N, et al. Isolation and identification of cellulolytic bacteria associated with the gut of Monochamus alternatus larvae[J]. J Fujian Agric For Univ (Nat Sci Ed), 2018,47(3):322-328. DOI: 10.13323/j.cnki.j.fafu(nat.sci.).2018.03.009.
[43]
CHEN S L, SUN S, ZHONG C Y, et al. Bioconversion of lignocellulose and simultaneous production of cellulase,ligninase and bioflocculants by Alcaligenes faecalis-X3[J]. Process Biochem, 2020,90:58-65. DOI: 10.1016/j.procbio.2019.11.008.

RIGHTS & PERMISSIONS

Copyright reserved © 2021
PDF(2020 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/