Distribution of soil factors across the habitat gradient of Spartina alterniflora and Suaeda salsa communities

XIA Wenwen, LI Xiang, WANG Yuqi, XU Chi, LIU Maosong

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (3) : 37-44.

PDF(2471 KB)
PDF(2471 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (3) : 37-44. DOI: 10.12302/j.issn.1000-2006.202004028

Distribution of soil factors across the habitat gradient of Spartina alterniflora and Suaeda salsa communities

Author information +
History +

Abstract

【Objective】The purpose of this study was to investigate the effects of Spartina alterniflora invasion on dynamic changes in soil factors and how soil factors alter the invasion process of Spartina alterniflora. 【Method】 Samples were taken from the six gradient zones in the ecotone of Spartina alterniflora and Suaeda salsa communities at depths of 0-10, ≥10-30 and ≥30-60 cm, in Yancheng Coastal Wetland Jiangsu Province. We investigated the plant traits and analyzed the main soil factors. 【Result】 ① Soil factors at 0-10 cm, except the average particle size and total phosphorus, were significantly different from those at the other depths.② The surface soil factors and community characteristics displayed a gradient distribution pattern. Compared with S. salsa, the surface soil of Spartina alterniflora had higher soil water content, the total organic carbon, total nitrogen, and lower bulk density, salinity and pH.③ With the transition from the interior to the edge zone of the Spartina alterniflora community, plant biomass, height and coverage decreased. Surface soil water content, the total organic carbon and nitrogen generally decreased, while the bulk density and pH increased. Additionally, salinity, particle size and total phosphorus showed no significant differences among the different zones. 【Conclusion】 The invasion of Spartina alterniflora altered soil factors mainly in the surface layer, which included increased soil water content, total organic carbon, nitrogen, and reduced pH, bulk density and salinity. As the duration of invasion increased, the total organic carbon and nitrogen showed cumulative effects. The increase in soil water content, the total organic carbon and nitrogen may promote the comparatively competitive advantages of Spartina alterniflora.

Key words

coastal wetland / biological invasion / habitat gradient / soil transformation / plant competition / Jiangsu Province

Cite this article

Download Citations
XIA Wenwen , LI Xiang , WANG Yuqi , et al . Distribution of soil factors across the habitat gradient of Spartina alterniflora and Suaeda salsa communities[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(3): 37-44 https://doi.org/10.12302/j.issn.1000-2006.202004028

References

[1]
王娟, 刘红玉, 李玉凤, 等. 入侵种互花米草空间扩张模式识别与景观变化模拟[J]. 生态学报, 2018,38(15):5413-5422.
WANG J, LIU H Y, LI Y F, et al. Recognition of spatial expansion patterns of invasive Spartina alterniflora and simulation of the resulting landscape-changes[J]. Acta Ecol Sin, 2018,38(15):5413-5422.DOI: 10.5846/stxb201709121641.
[2]
徐伟伟, 王国祥, 刘金娥, 等. 苏北海滨湿地互花米草种群繁殖方式[J]. 生态学报, 2014,34(14):3839-3847.
XU W W, WANG G X, LIU J E, et al. Two reproductive mode of Spartina alterniflora on coastal wetland of north Jiangsu[J]. Acta Ecol Sin, 2014,34(14):3839-3847.DOI: 10.5846/stxb201212041739.
[3]
KHAN M A, GULZAR S. Germination responses of Sporobolus ioclados:a saline desert grass[J]. J Arid Environ, 2003,53(3):387-394.DOI: 10.1006/jare.2002.1045.
[4]
AL-KHATEEB S A. Effect of salinity and temperature on germination,growth and ion relations of Panicum turgidum Forssk[J]. Bioresour Technol, 2006,97(2):292-298.DOI: 10.1016/j.biortech.2005.02.041.
[5]
陈正勇, 王国祥, 刘金娥, 等. 苏北滨海湿地互花米草两种繁殖体与本地种竞争能力分析[J]. 海洋科学进展, 2012,30(3):380-389.
CHEN Z Y, WANG G X, LIU J E, et al. Competitive ability of two propagules of Spartina alterniflora with native species in the coastal wetlands of north Jiangsu[J]. Adv Mar Sci, 2012,30(3):380-389.DOI: 10.3969/j.issn.1671-6647.2012.03.008.
[6]
侯明行, 刘红玉, 张华兵. 盐城淤泥质潮滩湿地潮沟发育及其对米草扩张的影响[J]. 生态学报, 2014,34(2):400-409.
HOU M H, LIU H Y, ZHANG H B. Effection of tidal creek system on the expansion of the invasive Spartina in the coastal wetland of Yancheng[J]. Acta Ecol Sin, 2014,34(2):400-409.DOI: 10.5846/stxb201304220777.
[7]
张华兵, 甄艳, 李玉凤, 等. 江苏盐城湿地珍禽国家级自然保护区土壤盐度空间分异特征[J]. 湿地科学, 2018,16(2):152-158.
ZHANG H B, ZHEN Y, LI Y F, et al. Spatial heterogeneity of soil salinity in Jiangsu Yancheng Wetland National Nature Reserve rare birds[J]. Wetl Sci, 2018,16(2):152-158.DOI: 10.13248/j.cnki.wetlandsci.2018.02.008.
[8]
张华兵, 刘红玉, 李玉凤, 等. 盐城海滨湿地景观演变关键土壤生态因子与阈值研究[J]. 生态学报, 2013,33(21):6975-6983.
ZHANG H B, LIU H Y, LI Y F, et al. The studying of key ecological factors and threshold of landscape evolution in Yancheng coastal wetland[J]. Acta Ecol Sin, 2013,33(21):6975-6983.
[9]
张华兵, 刘红玉, 李玉凤, 等. 自然条件下海滨湿地土壤生态过程与景观演变的耦合关系[J]. 自然资源学报, 2013,28(1):63-72.
ZHANG H B, LIU H Y, LI Y F, et al. The coupling relationship between soil eco-processes and landscape evolution under the natural conditions in Yancheng coastal wetland[J]. J Nat Resour, 2013,28(1):63-72.
[10]
张晗冰, 孔范龙, 郗敏, 等. 胶州湾典型河口湿地土壤活性有机碳和酶活性对互花米草入侵的响应[J]. 生态学报, 2018,38(13):4869-4878.
ZHANG H B, KONG F L, XI M, et al. Responses of soil labile organic carbon and enzyme activity to Spartina alterniflora invasion in estuary wetland of Jiaozhou Bay[J]. Acta Ecol Sin, 2018,38(13):4869-4878.DOI: 10.5846/stxb201707241324.
[11]
金宝石, 闫鸿远, 王维奇, 等. 互花米草入侵下湿地土壤碳氮磷变化及化学计量学特征[J]. 应用生态学报, 2017,28(5):1541-1549.
JIN B S, YAN H Y, WANG W Q, et al. Changes of soil carbon,nitrogen and phosphorus and stoichiometry characteristics in marsh invaded by Spartina alterniflora[J]. Chin J Appl Ecol, 2017,28(5):1541-1549.DOI: 10.13287/j.1001-9332.201705.014.
[12]
金宝石, 闫鸿远, 章文龙, 等. 互花米草入侵下闽江河口沼泽土壤中各形态氮含量和储量[J]. 湿地科学, 2017,15(3):375-384.
JIN B S, YAN H Y, ZHANG W L, et al. Contents and storages of various forms of nitrogen in soils of wetlands in the Min River estuary under Spartina alterniflora invasion[J]. Wetl Sci, 2017,15(3):375-384.DOI: 10.13248/j.cnki.wetlandsci.2017.03.009.
[13]
LUO M, HUANG J F, ZHU W F, et al. Impacts of increasing salinity and inundation on rates and pathways of organic carbon mineralization in tidal wetlands:a review[J]. Hydrobiologia, 2019,827(1):31-49.DOI: 10.1007/s10750-017-3416-8.
[14]
唐洪根, 周廷璋, 辛沛. 淤积刺激下滨海湿地植物根系吸水及土壤水分变化[J]. 水资源保护, 2020,36(4):87-92.
TANG H G, ZHOU T Z, XIN P. Stimulation of sediment deposition to root water uptake and soil water change in wetland near sea[J]. Water Resources Protection, 2020,36(4):87-92. DOI: 10.3880/j.issn.1004-6933.2020.04.014.
[15]
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
[16]
刘广明, 杨劲松, 姜艳. 江苏典型滩涂区地下水及土壤的盐分特征研究[J]. 土壤, 2005,37(2):163-168.
LIU G M, YANG J S, JIANG Y. Salinity characters of soils and groundwater in typical coastal area in Jiangsu Province[J]. Soils, 2005,37(2):163-168.DOI: 10.3321/j.issn:0253-9829.2005.02.009.
[17]
周煜, 余夏杨, 周廷璋, 等. 采用高密度电法仪监测围垦区土壤盐分变化[J]. 水资源保护, 2018,34(2):96-101.
ZHOU Y, YU X Y, ZHOU T Z, et al. Monitoring on change of soil salinity with high-density resistivity instrument in a reclaimed area[J]. Water Resources Protection, 2018,34(2):96-101. DOI: 10.3880/j.issn.1004-6933.2018.02.15.
[18]
苗萍, 谢文霞, 于德爽, 等. 胶州湾互花米草湿地氮、磷元素的垂直分布及季节变化[J]. 应用生态学报, 2017,28(5):1533-1540.
MIAO P, XIE W X, YU D S, et al. Vertical distribution and seasonal variation of nitrogen,phosphorus elements in Spartina alterniflora wetland of Jiaozhou Bay,Shandong,China[J]. Chin J Appl Ecol, 2017,28(5):1533-1540.DOI: 10.13287/j.1001-9332.201705.003.
[19]
毛志刚, 王国祥, 刘金娥, 等. 盐城海滨湿地盐沼植被对土壤碳氮分布特征的影响[J]. 应用生态学报, 2009,20(2):293-297.
MAO Z G, WANG G X, LIU J E, et al. Influence of salt marsh vegetation on spatial distribution of soil carbon and nitrogen in Yancheng coastal wetland[J]. Chin J Appl Ecol, 2009,20(2):293-297.
[20]
冯振兴, 高建华, 陈莲, 等. 互花米草生物量变化对盐沼沉积物有机碳的影响[J]. 生态学报, 2015,35(7):2038-2047.
FENG Z X, GAO J H, CHEN L, et al. The response of organic carbon content to biomass dynamics in Spartina alterniflora marsh[J]. Acta Ecol Sin, 2015,35(7):2038-2047.DOI: 10.5846/stxb201404090685.
[21]
ZHOU C F, ZHAO H, SUN Z Y, et al. The invasion of Spartina alterniflora alters carbon dynamics in China’s Yancheng Natural Reserve[J]. Clean Soil Air Water, 2015,43(2):159-165.DOI: 10.1002/clen.201300839.
[22]
李茜倩, 张元明. 荒漠藓类结皮斑块中土壤理化性质、酶活性及微生物生物量分布的边缘效应[J]. 生态学杂志, 2018,37(7):2114-2121.
LI X Q, ZHANG Y M. The horizontal distribution of soil physicochemical properties,soil enzyme activities,and microbial biomass in moss crust patch in a temperate desert[J]. Chin J Ecol, 2018,37(7):2114-2121.DOI: 10.13292/j.1000-4890.201807.001.
[23]
杨娟, JAY G, 刘宝林, 等. 雷州半岛红树林边缘效应及其对海岸有机碳库的影响[J]. 海洋学报(中文版), 2012,34(5):161-168.
YANG J, JAY G, LIU B L, et al. Edge effects of mangrove boundaries and their impact on organic carbon pool along the coast of Leizhou Peninsula[J]. Acta Oceanologica Sinica, 2012,34(5):161-168.
[24]
王丹, 张荣, 熊俊, 等. 互花米草入侵对滨海湿地土壤碳库的贡献:基于稳定同位素的研究[J]. 植物生态学报, 2015,39(10):941-949.
Abstract
互花米草(Spartina alterniflora)因良好的促淤能力被引种至我国东海岸, 目前已成为我国滨海湿地分布最为广泛的入侵种。当前的研究大多关注其生产力增加对生态系统固碳能力的直接影响, 却忽视了对其间接作用的定量研究, 如促淤对土壤碳库的贡献。该研究以上海崇明东滩湿地为研究地, 选择具有不同入侵时长(4年、6年、10年)的互花米草斑块, 同时选择芦苇(Phragmites australis)斑块和光滩作为对照, 采集土壤、植物和水体样品。通过测定土壤总碳、总氮、有机碳以及植物和土壤有机质的碳、氮稳定同位素比值(&#x003b4;<sup>13</sup>C和&#x003b4;<sup>15</sup>N), 分析土壤碳库的变化; 同时, 针对群落结构不同的互花米草斑块分别采用同位素二源混合模型和三源混合模型定量分析土壤有机碳的来源。结果表明: (1)互花米草斑块土壤有机碳含量和&#x003b4;<sup>13</sup>C值逐年增加。互花米草入侵能显著增加土壤有机碳库, 并随入侵时间的延长表现出累积效应。土壤碳氮比值随入侵时间的增加而降低, 并趋近于雷德菲尔比率, 表明植物入侵增加土壤碳、氮输入的同时, 海源的潮汐输入也是土壤碳库的重要来源。(2)互花米草对土壤碳库的贡献随入侵时长的增加而增加, 而潮汐输入对土壤碳库的贡献率则不断降低。在入侵时长为4年的斑块中, 潮汐输入的贡献率在90.0%以上; 在入侵10年的斑块中, 潮汐输入的贡献率仅为18.4%, 而互花米草植株的贡献率高达73.5%。这说明互花米草对土壤碳库的贡献在入侵早期以促淤为主, 入侵后期主要依靠自身碳输入。
WANG D, ZHANG R, XIONG J, et al. Contribution of invasive species Spartina alterniflora to soil organic carbon pool in coastal wetland:stable isotope approach[J]. Acta Phytoecol Sin, 2015,39(10):941-949.
[25]
金宝石, 高灯州, 杨平, 等. 闽江河口区互花米草入侵不同年限下湿地土壤有机碳变化[J]. 自然资源学报, 2016,31(4):608-619.
JIN B S, GAO D Z, YANG P, et al. Change of soil organic carbon with different years of Spartina alterniflora invasion in wetlands of Minjiang River estuary[J]. J Nat Resour, 2016,31(4):608-619.DOI: 10.11849/zrzyxb.20150425.
[26]
姚成, 万树文, 孙东林, 等. 盐城自然保护区海滨湿地植被演替的生态机制[J]. 生态学报, 2009,29(5):2203-2210.
YAO C, WAN S W, SUN D L, et al. Ecological mechanisms of vegetation succession of coastal wetland in Yancheng Nature Reserve[J]. Acta Ecol Sin, 2009,29(5):2203-2210.DOI: 10.3321/j.issn:1000-0933.2009.05.004.
[27]
韩爽, 甄艳, 谭清梅, 等. 盐城海滨湿地植被地上生物量遥感反演研究[J]. 林业资源管理, 2018(4):105-111.
HAN S, ZHEN Y, TAN Q M, et al. Remote sensing inversion of aboveground biomass in Yancheng coastal wetlands[J]. For Resour Manag, 2018(4):105-111.DOI: 10.13466/j.cnki.lyzygl.2018.04.017.
[28]
MENDELSSOHN I A, POSTEK M T. Elemental analysis of deposits on the roots of Spartina alterniflora loisel[J]. Am J Bot, 1982,69(6):904-912.DOI: 10.1002/j.1537-2197.1982.tb13334.x.
[29]
张华兵, 刘红玉, 李玉凤, 等. 自然条件下盐城海滨湿地土壤水分/盐度空间分异及其与植被关系研究[J]. 环境科学, 2013,34(2):540-546.
ZHANG H B, LIU H Y, LI Y F, et al. Spatial variation of soil moisture/salinity and the relationship with vegetation under natural conditions in Yancheng coastal wetland[J]. Environ Sci, 2013,34(2):540-546.
[30]
汪承焕. 环境变异对崇明东滩优势盐沼植物生长、分布与种间竞争的影响[D]. 上海:复旦大学, 2009.
[31]
TYLER A C, LAMBRINOS J G, GROSHOLZ E D. Nitrogen inputs promote the spread of an invasive marsh grass[J]. Ecol Appl, 2007,17(7):1886-1898.DOI: 10.1890/06-0822.1.
[32]
张耀鸿, 张富存, 李映雪, 等. 外源氮输入对互花米草生长及叶特征的影响[J]. 生态环境学报, 2010,19(10):2297-2301.
ZHANG Y H, ZHANG F C, LI Y X, et al. Influence of exogenous N import on growth and leaf character of Spartina alterniflora[J]. Ecol Environ, 2010,19(10):2297-2301.DOI: 10.3969/j.issn.1674-5906.2010.10.006.

RIGHTS & PERMISSIONS

Copyright reserved © 2021
PDF(2471 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/