
Influence of strip cutting management on soil bacterial community structure and diversity in Phyllostachys edulis stands
WANG Shumei, WANG Bo, FAN Shaohui, XIAO Xiao, XIA Wen, GUAN Fengying
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (2) : 60-68.
Influence of strip cutting management on soil bacterial community structure and diversity in Phyllostachys edulis stands
【Objective】In order to provide scientific guidance for understanding the management of bamboo (Phyllostachys edulis) forests stands and restoration of soil ecosystems, the impact of strip cutting on soil bacterial community structure and diversity was studied. 【Method】Soil samples were collected from P. edulis stands of different widths (3, 9 and 15 m) after 25 d at Yixing, Jiangsu Province. V3-V4 regions were sequenced using the Illumina MiSeq High Throughput Sequencing to identify soil bacteria and predict functional groups. Soil organic matter, total N, total P, total K, available N, available P and available K were analyzed using standard methods.【Result】With the increase in cutting width, the contents of soil available P, total K, and available K decreased, while the contents of soil organic matter, and total and available N initially increased and then decreased. The selection of the appropriate cutting width could improve soil fertility, but when the cutting width exceeded a certain limit, the soil fertility and the content of available nutrients decreased. Strip cutting management had an impact on the soil bacterial abundance, diversity and evenness. At a cutting width of 3 m, the soil bacterial community was richer, and species distribution was more uniform than others. With the increase in the cutting width, the bacterial community richness and uniformity in the P. edulis forest decreased. When the cutting width exceeded a certain level, the difference in species composition between communities decreased. Strip cutting increased the diversity of Proteobacteria and decreased that of Acidobacteria and Chloroflexi. Proteobacteria, Actinobacteria, Acidobacteria and chloroflexi belong to the same functional group in the stripped soil of the bamboo forest, stimulating carbon and nitrogen fixation and the transformation and decomposition of other nutrients. The main metabolic pathways after strip cutting were carbohydrate and amino acid production.【Conclusion】Comprehensive analyses showed that strip cutting of P. edulis forests had a significant influence on the soil bacterial community structure and diversity. The shorter width (3 m) strip cutting could increase the abundance and diversity of soil bacteria and nutrient content. However, with the increase in strip-cutting width, the various indicators decreased. After strip cutting, soil microbial groups mainly acted on the fixation, decomposition, and transformation of C and N.
Phyllostachys edulis / strip cutting / soil bacteria / bacterial biodiversity / bacterial community richness / function prediction
[1] |
国家林业与草原局. 中国森林资源报告 [M]. 北京: 中国林业出版社, 2019.
National Forestry and Grassland Administration. China forest resources report [M]. Beijing: China Forestry Publishing House, 2019.
|
[2] |
|
[3] |
范少辉, 刘广路, 苏文会, 等. 竹林培育研究进展[J]. 林业科学研究, 2018,31(1):137-144.
|
[4] |
苏文会, 曾宪礼, 范少辉, 等. 带状采伐对毛竹非结构性碳与生物量分配的影响[J]. 生态学杂志, 2019,38(10):2934-2940.
|
[5] |
曾宪礼, 苏文会, 范少辉, 等. 带状采伐毛竹林恢复的质量特征研究[J]. 西北植物学报, 2019,39(5):917-924.
|
[6] |
曾宪礼, 苏文会, 范少辉, 等. 带状采伐毛竹林土壤质量评价[J]. 生态学杂志, 2019,38(10):3015-3023.
|
[7] |
|
[8] |
张明锦, 陈良华, 张健, 等. 马尾松人工林林窗内凋落叶微生物生物量碳和氮的动态变化[J]. 应用生态学报, 2016,27(3):672-680.
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
张明锦, 张健, 纪托未, 等. 林窗对凋落物分解过程中细菌群落结构和多样性的影响[J]. 生态环境学报, 2015,24(8):1287-1294.
|
[17] |
张晓, 刘世荣, 黄永涛, 等. 辽东栎林演替过程中的土壤细菌群落结构和多样性变化[J]. 林业科学, 2019,55(10):193-202.
|
[18] |
鲁如坤. 土壤农业化学分析方法 [M]. 北京: 中国农业科技出版社, 2002.
|
[19] |
管云云, 费菲, 关庆伟, 等. 林窗生态学研究进展[J]. 林业科学, 2016,52(4):91-99.
|
[20] |
|
[21] |
张小鹏, 王得祥, 常明捷, 等. 林窗干扰对森林更新及其微环境影响的研究[J]. 西南林业大学学报, 2016,36(6):170-177.
|
[22] |
韩文娟, 何景峰, 张文辉, 等. 黄龙山林区油松人工林林窗对幼苗根系生长及土壤理化性质的影响[J]. 林业科学, 2013,49(11):16-23.
|
[23] |
刘聪, 朱教君, 吴祥云, 等. 辽东山区次生林不同大小林窗土壤养分特征[J]. 东北林业大学学报, 2011,39(1):79-81.
|
[24] |
欧江, 刘洋, 张捷, 等. 长江上游马尾松人工林土壤铵态氮和硝态氮对采伐林窗的初期响应[J]. 应用与环境生物学报, 2015,21(1):147-154.
|
[25] |
|
[26] |
贺纪正, 王军涛. 土壤微生物群落构建理论与时空演变特征[J]. 生态学报, 2015, 35(20):1-2, 6575-6583.
|
[27] |
丁新景, 敬如岩, 黄雅丽, 等. 基于高通量测序的4种不同树种人工林根际土壤细菌结构及多样性[J]. 林业科学, 2018,54(1):81-89.
|
[28] |
王安宁, 黄秋娴, 李晓刚, 等. 冀北山区不同植被恢复类型根际土壤细菌群落结构及多样性[J]. 林业科学, 2019,55(9):130-141.
|
[29] |
|
[30] |
周本智, 傅懋毅. 竹林地下鞭根系统研究进展[J]. 林业科学研究, 2004,17(4):533-540.
|
[31] |
翟婉璐, 钟哲科, 高贵宾, 等. 覆盖经营对雷竹林土壤细菌群落结构演变及多样性的影响[J]. 林业科学, 2017,53(9):133-142.
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
/
〈 |
|
〉 |