Effects of seawater on growth and physiology of Betula microphylla var. paludosa cutting seedlings

SHE Jianwei, ZHANG Kang, ZHENG Xu, ZHAO Xiaojun, CHENG Fang, TANG Luozhong

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (5) : 102-108.

PDF(1630 KB)
PDF(1630 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (5) : 102-108. DOI: 10.12302/j.issn.1000-2006.202004043

Effects of seawater on growth and physiology of Betula microphylla var. paludosa cutting seedlings

Author information +
History +

Abstract

【Objective】 The aim of this research is to study the growth and physiological responses of Betula microphylla var. paludosa exposed to salt stress in seawater and provide the basis for the selection of seawater-tolerant tree species. 【Method】 Seawater diluted to different salinities (salt content) was used for root irrigation and leaf spray treatment of 1.5-year-old B. microphylla var. paludosa cutting seedlings. The root irrigating salinity was 0% (CK), 0.2%, 0.4% and 0.6% (mass fraction, same as below), respectively. The salinity of spray treatment on the leaves was 0 (CK), 3.07, 6.14, and 15.35 g/L, respectively. We observed morphological changes in the cutting seedlings and measured their growth and physiological indexes. 【Result】 When the salinity of the soil seawater treatment was below 0.6%, and the salinity of the leaf seawater treatment was below 6.14 g/L, the cutting seedlings suffered less salt damage and survived completely. Low salinity (0.2%) of seawater treatment on the soil could increase the content of chlorophyll and soluble protein in leaves to a certain extent and promote the growth of cutting seedlings. Both seawater treatments on the soil and the leaves could lead to an increase in the relative conductivity of leaves, but the increase in seawater treatment on the leaves had a more significant effect than that on the soil. The malondialdehyde (MDA) content of leaves under seawater treatment on the roots was lower than that of the control treatment (CK), and the MDA content of leaves under the seawater treatment on the leaves was higher than that of CK, but the difference between them was not significant. In addition to the high salinity (15.35 g/L) of seawater treatment on the leaves, the activity of superoxide dismutase in the leaves of other seawater treatments was lower than that of CK. After seawater treatment of the soil and leaves, the peroxidase activity of cutting seedling leaves was higher than that of CK in the early stage and lower than that of CK in the later stage. 【Conclusion】 B. microphylla var. paludosa could withstand soil seawater treatment with a salinity of 0.6% or leaf seawater treatment with a salinity of 6.14 g/L, showing a strong tolerance to seawater, and had substantial application potential in saline land greening.

Key words

Betula microphylla var. paludosa / salt stress / seawater treatment / seedling growth / physiology

Cite this article

Download Citations
SHE Jianwei , ZHANG Kang , ZHENG Xu , et al . Effects of seawater on growth and physiology of Betula microphylla var. paludosa cutting seedlings[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(5): 102-108 https://doi.org/10.12302/j.issn.1000-2006.202004043

References

[1]
杨昌友, 王健, 李文华. 新疆桦木属(Betula L.)新分类群[J]. 植物研究, 2006, 26(6):648-655.
YANG C Y, WANG J, LI W H. New taxa of Betula L. from Xinjiang China[J]. Bull Bot Res, 2006, 26(6):648-655. DOI: 10.3969/j.issn.1673-5102.2006.06.003.
[2]
赵文文, 李术梅, 李莉. NaCl胁迫对沼泽小叶桦光合特性的影响[J]. 西南林业大学学报, 2016, 36(4):42-47.
ZHAO W W, LI S M, LI L. Effects of NaCl stress on chlorophyll fluorescence parameter in leaf of Betula microphylla var.paludosa seedlings[J]. J Southwest For Univ, 2016, 36(4):42-47. DOI: 10.11929/j.issn.2095-1914.2016.04.007.
[3]
王斌, 巨波, 赵慧娟, 等. 不同盐梯度处理下沼泽小叶桦的生理特征及叶片结构[J]. 林业科学, 2011, 47(10):29-36.
WANG B, JU B, ZHAO H J, et al. Photosynthetic performance and variation in leaf anatomic structure of Betula microphylla var.paludosa under different saline conditions[J]. Sci Silvae Sin, 2011, 47(10):29-36.
[4]
郭洋, 盛建东, 陈波浪, 等. 3种盐生植物干物质积累与养分吸收特征[J]. 干旱区研究, 2016, 33(1):144-149.
GUO Y, SHENG J D, CHEN B L, et al. Study on dry matter accumulation and nutriention absorption of three halophytes under artificial planting condition[J]. Arid Zone Res, 2016, 33(1):144-149. DOI: 10.13866/j.azr.2016.01.18.
[5]
卞阿娜, 林鸣, 王文卿. 根系与叶片盐处理对枇杷幼苗生长及体内矿质元素分布的影响[J]. 植物生理学报, 2015, 51(3):273-279.
BIAN A, LIN M, WANG W Q. Effects of salt treatment on growth and compartmental allocation of mineral elements in Eriobotrya japonica seedlings[J]. Plant Physiol Commun, 2015, 51(3):273-279.
[6]
赵颖, 王国明, 叶波, 等. 盐雾胁迫对舟山海岛7个造林树种存活和生长的影响[J]. 植物资源与环境学报, 2016, 25(3):36-44.
ZHAO Y, WANG G M, YE B, et al. Effect of salt fog stress on survival and growth of seven afforestation tree species in Zhoushan Islands[J]. J Plant Resour Environ, 2016, 25(3):36-44. DOI: 10.3969/j.issn.1674-7895.2016.03.05.
[7]
FERRANTE A, TRIVELLINI A, MALORGIO F, et al. Effect of seawater aerosol on leaves of six plant species potentially useful for ornamental purposes in coastal areas[J]. Sci Hortic, 2011, 128(3):332-341.DOI: 10.1016/j.scienta.2011.01.008.
[8]
廖岩, 彭友贵, 陈桂珠. 植物耐盐性机理研究进展[J]. 生态学报, 2007, 27(5):2077-2089.
LIAO Y, PENG Y G, CHEN G Z. Research advances in plant salt-tolerance mechanism[J]. Acta Ecol Sin, 2007, 27(5):2077-2089. DOI: 10.3321/j.issn:1000-0933.2007.05.049.
[9]
沈燕, 方升佐, 孙志鸿. 盐胁迫对欧美杂交杨异戊二烯释放和光合参数的影响[J]. 应用与环境生物学报, 2019, 25(1):83-88.
SHEN Y, FANG S Z, SUN Z H. Effects of salinity stress on isoprene emission and photosynthetic parameters in Populus deltoides × P. nigra[J]. Chinese J App Envir Bio, 2019, 25(1):83-88. DOI: 10.19675/j.cnki.1006-687x.2018.03039.
[10]
杨振德. 分光光度法测定叶绿素含量的探讨[J]. 广西农业大学学报, 1996, 15(2):145-150.
YANG Z D. Studies on the determination of chlorophyll content by spectrophotometric method[J]. J Guangxi Agric Univ, 1996, 15(2):145-150.
[11]
BRADFORD M M. a rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72(1/2):248-254. DOI: 10.1016/0003-2697(76)90527-3.
[12]
张志良. 植物生理学实验指导[M]. 4版.北京: 高等教育出版社, 2009.
ZHANG Z L. Experimental guidance of plant physiology [M].4th ed. Beijing: Higher Education Press, 2009.
[13]
陶晶. 东北主要杨树抗盐机理及抗性品种选育的研究[D]. 哈尔滨: 东北林业大学, 2002.
TAO J. Study on salt-tolerance mechanisms and resistance breeding of main popular varieties in westward northeast China[D]. Harbin: Northeast Forestry University, 2002.
[14]
MUNNS R. Comparative physiology of salt and water stress[J]. Plant Cell Environ, 2002, 25(2):239-250. DOI: 10.1046/j.0016-8025.2001.00808.x.
[15]
杨万鹏, 马瑞, 杨永义, 等. NaCl处理对黑果枸杞生长、生理指标的影响[J]. 分子植物育种, 2019, 17(13):4437-4447.
YANG W P, MA R, YANG Y Y, et al. Effects of NaCl treatment on the growth and physiological indexes of Lycium ruthenicum[J]. Mol Plant Breed, 2019, 17(13):4437-4447. DOI: 10.13271/j.mpb.017.004437.
[16]
张华新, 刘正祥, 刘秋芳. 盐胁迫下树种幼苗生长及其耐盐性[J]. 生态学报, 2009, 29(5):2263-2271.
ZHANG H X, LIU Z X, LIU Q F. Seedling growth and salt tolerance of tree species under NaCl stress[J]. Acta Ecol Sin, 2009, 29(5):2263-2271.DOI: 10.3321/j.issn:1000-0933.2009.05.010.
[17]
周琦, 祝遵凌, 施曼. 盐胁迫对鹅耳枥生长及生理生化特性的影响[J]. 南京林业大学学报(自然科学版), 2015, 39(6):56-60.
ZHOU Q, ZHU Z L, SHI M. Effects of salt stress on growth, physiological and biochemical characteristics of Carpinus turczaninowii seedlings[J]. J Nanjing For Univ (Nat Sci Ed), 2015, 39(6):56-60.DOI: 10.3969/j.issn.1000-2006.2015.06.011.
[18]
程钧, 张晓平, 方炎明. 不同浓度NaCl胁迫对红桤木幼苗生长及部分生理指标的影响[J]. 中国农学通报, 2010, 26(6):142-145.
CHENG J, ZHANG X P, FANG Y M. Effects of different NaCl stress on several physiological characteristics and seedling growth of Alnus rubrat[J]. Chin Agric Sci Bull, 2010, 26(6):142-145.
[19]
鲁强, 杨玲, 王昊伟, 等. 秀丽四照花光合特性和叶绿体超微结构的盐胁迫响应[J]. 南京林业大学学报(自然科学版), 2020, 44(4):29-36.
LU Q, YANG L, WANG H W, et al. Responses of photosynthetic characteristics and chloroplast ultrastructure to salt stress in seedlings of Cornus hongkongensis subsp. elegans[J]. J Nanjing Fore Univ (Nat Sci Ed), 2020, 44(4):29-36.DOI: 10.3969/j.issn.1000-2006.201904035.
[20]
石元豹, 汪贵斌, 黄广远, 等. 3个臭椿半同胞家系耐盐性比较研究[J]. 四川农业大学学报, 2016, 34(2):153-160.
SHI Y B, WANG G B, HUANG G Y, et al. Salt tolerance of 3 half-sib families of Ailanthus altissima[J]. J Sichuan Agric Univ, 2016, 34(2):153-160. DOI: 10.16036/j.issn.1000-2650.2016.02.005.
[21]
杨颖丽, 徐世键, 保颖, 等. 盐胁迫对两种小麦叶片蛋白质的影响[J]. 兰州大学学报(自然科学版), 2007, 43(1):70-74.
YANG Y L, XU S J, BAO Y, et al. Effect of NaCl on protein in two cultivar leaves[J]. J Lanzhou Univ (Nat Sci), 2007, 43(1):70-74. DOI: 10.3321/j.issn:0455-2059.2007.01.015.
[22]
杨传平, 焦喜才, 刘文祥, 等. 树木的细胞膜透性与抗盐性[J]. 东北林业大学学报, 1997, 25(1):2-4.
YANG C P, JIAO X C, LIU W X, et al. The relationship of permeability of plasma membrane and salt resistance of woody plants[J]. J Northeast For Univ, 1997, 25(1):1-3. DOI: 10.13759/j.cnki.dlxb.1997.01.001.
[23]
纳晓莹, 王秀伟, 徐浩玉, 等. 4种桦树幼苗耐盐性分析与评价[J]. 植物研究, 2015, 35(6):873-882.
NA X Y, WANG X W, XU H Y, et al. Analyzing and evaluating the salt tolerance of four kinds of birch seedlings[J]. Bull Bot Res, 2015, 35(6):873-882. DOI: 10.7525/j.issn.1673-5102.2015.06.014.
[24]
JAIN M, MATHUR G, KOUL S, et al. Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.)[J]. Plant Cell Rep, 2001, 20(5):463-468. DOI: 10.1007/s002990100353.
[25]
朱金方, 刘京涛, 陆兆华, 等. 盐胁迫对中国柽柳幼苗生理特性的影响[J]. 生态学报, 2015, 35(15):5140-5146.
ZHU J F, LIU J T, LU Z H, et al. Effects of salt stress on physiological characteristics of Tamarix chinensis Lour.seedlings[J]. Acta Ecol Sin, 2015, 35(15):5140-5146. DOI: 10.5846/stxb201312182981.
[26]
岳健敏, 任琼, 张金池. 植物盐耐机理研究进展[J]. 林业工程学报, 2015, 29(5):9-13.
YUE J M, REN Q, ZHANG J C. Research progress on salt tolerance mechanism of plants[J]. J Fore Eng, 2015, 29(5):9-13.DOI: 10.13360/j.issn.1000-8101.2015.05.003.
[27]
刘凤歧, 刘杰淋, 朱瑞芬, 等. 4种燕麦对NaCl胁迫的生理响应及耐盐性评价[J]. 草业学报, 2015, 24(1):183-189.
LIU F Q, LIU J L, ZHU R F, et al. Physiological responses and tolerance of four oat varieties to salt stress[J]. Acta Prataculturae Sin, 2015, 24(1):183-189. DOI: 10.11686/cyxb20150122.
[28]
赵可夫, 李法曾. 中国盐生植物[M]. 北京: 科学出版社, 1999: 6.
ZHAO K F, LI F Z. Chinese halophytes[M]. Beijing: Science Press, 1999: 6.
[29]
刘昉勳, 黄致远. 江苏滨海盐土植被的发生与动态的观察[J]. 植物学报, 1980, 22(1):63-66.
LIU F X, HUANG Z Y. Observations on the symgenesis and dynamic changes of coastal solonchak vegetation at Jiangsu[J]. Journal of Integrative Plant Biology, 1980, 22(1):63-66.
[30]
卞阿娜, 林鸣, 王文卿. 盐雾胁迫对榄仁幼苗生长及体内矿质元素分布的影响[J]. 生态环境学报, 2014, 23(11):1752-1758.
BIAN A N, LIN M, WANG W Q. Effects of salt spray on growth and compartmental allocation of mineral element of Terminalia catappa seedlings[J]. Ecol Environ Sci, 2014, 23(11):1752-1758. DOI: 10.3969/j.issn.1674-5906.2014.11.005.

RIGHTS & PERMISSIONS

Copyright reserved © 2021.
PDF(1630 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/