Construction and optimization of ecological security pattern based on the coupling of ecological-production-living spaces: taking Yangzhou City as an example

GUO Tianwei, LU Chunfeng, WANG Junxiao, LIU Ruicheng, ZHOU Shenglu

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (5) : 133-142.

PDF(7040 KB)
PDF(7040 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (5) : 133-142. DOI: 10.12302/j.issn.1000-2006.202004045

Construction and optimization of ecological security pattern based on the coupling of ecological-production-living spaces: taking Yangzhou City as an example

Author information +
History +

Abstract

【Objective】 By considering the interactions among ecology, production and living spaces, this paper provided a new idea for the optimization of ecological security patterns, as well as a decision reference for Yangzhou City to optimize its spatial development pattern under the premise of protecting ecological security.【Method】 This study uses Yangzhou as an example and is based on survey data of land use change at a scale of 1:5 000. This study has taken into consideration, future urban expansion and the impact of production space cushions on the ecological security pattern. From the perspective of good coupling, multi-scenario-based conflict coordination program evaluation and circular gradient analysis method are used to build and optimize regional ecological security patterns.【Result】 The ecological-production-living coupling optimization framework of “Ecological-production-living main function quantification-Multi-scenario basic scheme conflict coordination evaluation-Analysis of sub-region coordination scenario evaluation based on the ecological-production-living rule” was formed. Based on the coordination plan, the results showed that after the optimization of the ecological security pattern network, the area of ecological sources and corridors of Yangzhou City was 2 444.63 km2, accounting for 36.85% of the total area. The ecological security pattern network in the research area comprised the baseline function land, buffer function land, and connection function land, and their corresponding area proportions of the whole area were 23.16%, 12.01% and 1.68%, respectively.【Conclusion】 In this study, the ecological-production-living coupling optimization framework could provide new ideas for regional ecological security pattern optimization and effectively guide relevant planning.

Key words

ecological security pattern / ecospace / living space / machine learning / coupled model / coordination plan / Yangzhou City

Cite this article

Download Citations
GUO Tianwei , LU Chunfeng , WANG Junxiao , et al . Construction and optimization of ecological security pattern based on the coupling of ecological-production-living spaces: taking Yangzhou City as an example[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(5): 133-142 https://doi.org/10.12302/j.issn.1000-2006.202004045

References

[1]
WOOD S L R, JONES S K, JOHNSON J A, et al. Distilling the role of ecosystem services in the sustainable development goals[J]. Ecosyst Serv, 2018, 29:70-82.DOI: 10.1016/j.ecoser.2017.10.010.
[2]
车通, 罗云建. 量化社会经济发展对城市景观破碎化的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(1):154-162.
CHE T, LUO Y J. Quantifying effects of socioeconomic development on urban landscape fragmentation[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(1):154-162.DOI: 10.3969/j.issn.1000-2006.201807016.
[3]
金贵, 邓祥征, 张倩, 等. 武汉城市圈国土空间综合功能分区[J]. 地理研究, 2017, 36(3):541-552.
Abstract
以武汉城市圈为典型案例区开展国土空间综合功能分区实证研究。首先基于县域土地利用数据、社会经济数据和补充调查数据,从生产、生活和生态(三生)功能角度遴选出表征国土空间不同主题要素的24个指标因子,构建基于“要素—功能”的评价指标体系;然后从评价单元开始对10类空间二级功能进行比例关系表达,并通过BP神经网络方法评价三生功能承载力;最后引入双约束聚类法划定国土空间综合功能区,并匹配相应的调控政策。研究表明:基于统一的功能分类和指标体系实现功能比例表达在不同尺度间传递;武汉城市圈国土空间可划分为3个一级综合功能区和7个二级综合功能区。研究成果可为武汉城市圈国土空间格局优化提供参考。
JIN G, DENG X Z, ZHANG Q, et al. Comprehensive function zoning of national land space for Wuhan metropolitan region[J]. Geogr Res, 2017, 36(3):541-552.DOI: 10.11821/dlyj201703012.
[4]
YU K J, LI H L, LI D H. The negative approach and ecological infrastructure:the smart preservation of natural systems in the process of Urbanization Full-text in English[J]. J Nat Resour, 2008, 23(6):937-958.
[5]
李月辉, 胡志斌, 高琼, 等. 沈阳市城市空间扩展的生态安全格局[J]. 生态学杂志, 2007, 26(6):875-881.
LI Y H, HU Z B, GAO Q, et al. Ecological safety pattern of spatial extension in Shenyang City[J]. Chin J Ecol, 2007, 26(6):875-881.
[6]
陈昕, 彭建, 刘焱序, 等. 基于“重要性-敏感性-连通性”框架的云浮市生态安全格局构建[J]. 地理研究, 2017, 36(3):471-484.
Abstract
生态安全格局构建是保障城市生态安全,实现城市可持续性发展的重要途径,也是景观生态学研究的热点领域之一。生态源地识别与空间阻力面构建一直是生态安全格局构建中的技术难点。以广东省云浮市为例,从生态系统服务重要性、生态敏感性与景观连通性三个方面识别生态源地,利用DMSP/OLS夜间灯光数据修正基本生态阻力面,并运用最小累积阻力模型判定生态廊道,从而综合构建云浮市生态安全格局。研究表明:云浮市生态源地占全市总面积的36.47%,主要分布在西部与南部的山林地。云浮市生态廊道总长度为508.87 km,其中景观廊道总长度为315.58 km,组团廊道总长度为193.29 km,呈环状辐射分布于植被覆盖相对较好的山区地带。全市16个自然保护区基本都位于生态源地范围内。构建的“重要性—敏感性—连通性”框架可以为区域生态安全格局构建提供新思路,从而有效指引相关空间规划。
CHEN X, PENG J, LIU Y X, et al. Constructing ecological security patterns in Yunfu City based on the framework of importance-sensitivity-connectivity[J]. Geogr Res, 2017, 36(3):471-484.DOI: 10.11821/dlyj201703006.

Construction of ecological security patterns is an important approach to protecting urban ecological security and achieving urban sustainable development, which is one of key topics in the research of landscape ecology. The identification of ecological sources and the construction of spatial resistance surface have been the technical difficulties in the study of ecological security pattern. Yunfu city is the significant ecological hinterland of Guangdong Province with the backward economy, which is facing the pressure of ecological conservation as well as economic development. Thus, construction of ecological security pattern in Yunfu city can guide urban development and is also meaningful for protecting provincial ecological security. Based on GIS, ecological sources were identified from the aspects of ecosystem services' importance, ecological sensitivity, and landscape connectivity. On the basis of DMSP/OLS Nighttime Light data, ecological resistance surface was modified, and using minimum cumulative resistance model, ecological corridors were identified. The ecological sources with corridors constituted regional ecological security patterns. The results showed that, the area of ecological sources accounted for 36.47% of the total area, mainly distributed in mountainous area in western and southern Yunfu, which took forest as the main land cover type. The length of ecological corridors was 508.87 km, including 315.58 km landscape corridors and 193.29 km cluster corridors. It was also found that all the 16 nature reserves were in the range of ecological sources, and the constructed ecological security patterns and the layout of urban master planning complemented each other. The framework of importance-sensitivity-connectivity can provide a new method for the construction of regional ecological security patterns, and the study results can provide related planning with effective spatial guidance.

[7]
俞孔坚. 景观生态战略点识别方法与理论地理学的表面模型[J]. 地理学报, 1998, 53(S1):11-20.
YU K J. Ecologically strategic points in landscape and surface model[J]. Acta Geogr Sin, 1998, 53(S1):11-20.
[8]
RESHMIDEVI T V, ELDHO T I, JANA R. A GIS-integrated fuzzy rule-based inference system for land suitability evaluation in agricultural watersheds[J]. Agric Syst, 2009, 101(1/2):101-109.DOI: 10.1016/j.agsy.2009.04.001.
[9]
SZABÓ S, CSORBA P, SZILASSI P. Tools for landscape ecological planning-scale,and aggregation sensitivity of the contagion type landscape metric indices[J]. Carpathian J Earth Environ Sci, 2012, 7(3):127-136.
[10]
俞孔坚. 与自然和谐共生的城市规划设计理念与方法[J]. 人民论坛·学术前沿, 2019:1-19.
YU K J. Urban planning and design concept and method of harmonious coexistence with nature[J]. Frontiers, 2019:1-19.
[11]
钟太洋, 黄贤金, 王柏源. 经济增长与建设用地扩张的脱钩分析[J]. 自然资源学报, 2010, 25(1):18-31.
ZHONG T Y, HUANG X J, WANG B Y. On the degrees of decoupling and Recoupling of economic growth and expansion of construction land in China from 2002 to 2007[J]. J Nat Resour, 2010, 25(1):18-31.
[12]
彭建, 郭小楠, 胡熠娜, 等. 基于地质灾害敏感性的山地生态安全格局构建:以云南省玉溪市为例[J]. 应用生态学报, 2017, 28(2):627-635.
PENG J, GUO X N, HU Y N, et al. Constructing ecological security patterns in mountain areas based on geological disaster sensitivity:a case study in Yuxi City,Yunnan Province,China[J]. Chin J Appl Ecol, 2017, 28(2):627-635.DOI: 10.13287/j.1001-9332.201702.013.
[13]
汤旭, 冯彦, 王慧, 等. 湖南省县域森林生态安全评价与时空分析[J]. 南京林业大学学报(自然科学版), 2018, 42(4):61-67.
TANG X, FENG Y, WANG H, et al. County forest ecological security evaluation and spatial-temporal analysis in Hunan Province[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(4):61-67.DOI: 10.3969/j.issn.1000-2006.201705039.
[14]
张雅琦. 三峡水库中长期来水水量平衡模型研究[J]. 中国农村水利水电, 2017(2):90-93.
ZHANG Y Q. Research on middle-term and long-term hydrological forecast of Three Gorges Reservoir based on water balance model[J]. China Rural Water Hydropower, 2017(2):90-93.
[15]
钱大文, 曹广民, 杜岩功, 等. 2000—2015年祁连山南坡生态系统服务价值时空变化[J]. 生态学报, 2020, 40(4):1392-1404.
QIAN D W, CAO G M, DU Y G, et al. Spatio-temporal dynamics of ecosystem service value in the southern slope of Qilian Mountain from 2000 to 2015[J]. Acta Ecol Sin, 2020, 40(4):1392-1404.
[16]
刘婵, 刘冰, 赵文智, 等. 黑河流域植被水分利用效率时空分异及其对降水和气温的响应[J]. 生态学报, 2020, 40(3):888-899.
LIU C, LIU B, ZHAO W Z, et al. Temporal and spatial variability of water use efficiency of vegetation and its response to precipitation and temperature in Heihe River Basin[J]. Acta Ecol Sin, 2020, 40(3):888-899.DOI: 10.5846/stxb201810282323.
[17]
廖启林, 刘聪, 许艳, 等. 江苏省土壤元素地球化学基准值[J]. 中国地质, 2011, 38(5):1363-1378.
LIAO Q L, LIU C, XU Y, et al. Geochemical baseline values of elements in soil of Jiangsu Province[J]. Geology in China, 2011, 38(5):1363-1378. DOI: 10.3969/j.issn.1000-3657.2011.05.023.
[18]
刘瑞程, 沈春竹, 贾振毅, 等. 道路景观胁迫下沿海滩涂地区生态网络构建与优化:以盐城市大丰区为例[J]. 生态学杂志, 2019, 38(3):828-837.
LIU R C, SHEN C Z, JIA Z Y, et al. Construction and optimization of ecological network under the stress of road landscape in coastal beach area:a case study of Dafeng District,Yancheng City[J]. Chin J Ecol, 2019, 38(3):828-837.DOI: 10.13292/j.1000-4890.201903.017.
[19]
奉婷, 张凤荣, 李灿, 等. 基于耕地质量综合评价的县域基本农田空间布局[J]. 农业工程学报, 2014, 30(1):200-210.
FENG T, ZHANG F R, LI C, et al. Spatial distribution of prime farmland based on cultivated land quality comprehensive evaluation at County scale[J]. Trans Chin Soc Agric Eng, 2014, 30(1):200-210.DOI: 10.3969/j.issn.1002-6819.2014.01.026.
[20]
戴文举, 王东杰, 卢瑛, 等. 华南地区县域耕地质量和产能评价研究:以广东吴川为例[J]. 农业资源与环境学报, 2019, 36(4):419-430.
DAI W J, WANG D J, LU Y, et al. Evaluation of County level cultivated land quality and productivity in south China:a case study of Wuchuan City,Guangdong Province[J]. J Agric Resour Environ, 2019, 36(4):419-430.DOI: 10.13254/j.jare.2019.0221.
[21]
蔡雪娇, 吴志峰, 程炯. 基于核密度估算的路网格局与景观破碎化分析[J]. 生态学杂志, 2012, 31(1):158-164.
CAI X J, WU Z F, CHENG J. Analysis of road network pattern and landscape fragmentation based on kernel density estimation[J]. Chin J Ecol, 2012, 31(1):158-164.DOI: 10.13292/j.1000-4890.2012.0035.
[22]
陈凯, 刘凯, 柳林, 等. 基于随机森林的元胞自动机城市扩展模拟:以佛山市为例[J]. 地理科学进展, 2015, 34(8):937-946.
Abstract
本文提出一种基于随机森林的元胞自动机城市扩展(RF-CA)模型。通过在多个决策树的生成过程中分别对训练样本集和分裂节点的候选空间变量引入随机因素,提取城市扩展元胞自动机的转换规则。该模型便于并行构建,能在运算量没有显著增加的前提下提高预测的精度,对城市扩展中存在的随机因素有较强的容忍度。RF-CA模型可进行袋外误差估计,以快速获取模型参数;也可度量空间变量重要性,解释各空间变量在城市扩展中的作用。将该模型应用于佛山市1988-2012年的城市扩展模拟中,结果表明,与常用的逻辑回归模型相比,RF-CA模型进行模拟和预测分别能够提高1.7%和2.6%的精度,非常适用于复杂非线性特征的城市系统演变模型与扩展研究;通过对影响佛山市城市扩展的空间变量进行重要性度量,发现对佛山城市扩张模拟研究而言,距国道的距离与距城市中心的距离具有最重要的作用。
CHEN K, LIU K, LIU L, et al. Urban expansion simulation by random-forest-based cellular automata:a case study of Foshan City[J]. Prog Geogr, 2015, 34(8):937-946.
[23]
吴榛, 王浩. 扬州市绿地生态网络构建与优化[J]. 生态学杂志, 2015, 34(7):1976-1985.
WU Z, WANG H. Establishment and optimization of green ecological networks in Yangzhou City[J]. Chin J Ecol, 2015, 34(7):1976-1985.DOI: 10.13292/j.1000-4890.20150616.003.
[24]
张豆, 渠丽萍, 张桀滈. 基于生态供需视角的生态安全格局构建与优化:以长三角地区为例[J]. 生态学报, 2019, 39(20):7525-7537.
ZHANG D, QU L P, ZHANG J H. Ecological security pattern construction method based on the perspective of ecological supply and demand:a case study of Yangtze River Delta[J]. Acta Ecol Sin, 2019, 39(20):7525-7537.DOI: 10.5846/stxb201808301854.
[25]
KNAAPEN J P, SCHEFFER M, HARMS B. Estimating habitat isolation in landscape planning[J]. Landsc Urban Plan, 1992, 23(1):1-16.DOI: 10.1016/0169-2046(92)90060-D.
[26]
李广东, 方创琳. 城市生态-生产-生活空间功能定量识别与分析[J]. 地理学报, 2016, 71(1):49-65.
Abstract
土地利用多功能性识别是城市用地组织,协调与配置的基础信息源,是判定城市用地内在功能形态,功能组合模式和功能之间动态权衡的关键,具有重要的理论和实践意义,但长期以来并未构建一套可行的识别方法体系.本文从土地功能,生态系统服务和景观功能综合的视角构建城市生态--生产--生活空间功能分类体系,并以生态系统服务价值评估为基础系统整合空间功能价值量核算函数群,通过纵横对比的方法确定空间功能主导类型.研究区实证分析表明,城市生态--生产--生活功能分类体系较好反映了不同地类的功能类型;空间主导功能的识别也与不同地类的功能匹配;同时也发现三生空间的整体毗邻性较低,空间功能的互补和融合性较差的问题;三生空间功能存在一定的空间集聚性.
LI G D, FANG C L. Quantitative function identification and analysis of urban ecological-production-living spaces[J]. Acta Geogr Sin, 2016, 71(1):49-65.DOI: 10.11821/dlxb201601004.
[27]
廖李红, 戴文远, 陈娟, 等. 平潭岛快速城市化进程中三生空间冲突分析[J]. 资源科学, 2017, 39(10):1823-1833.
LIAO L H, DAI W Y, CHEN J, et al. Spatial conflict between ecological-production-living spaces on Pingtan Island during rapid urbanization[J]. Resour Sci, 2017, 39(10):1823-1833.DOI: 10.18402/resci.2017.10.03.
[28]
柯新利, 唐兰萍. 城市扩张与耕地保护耦合对陆地生态系统碳储量的影响:以湖北省为例[J]. 生态学报, 2019, 10(2):672-683.
KE X L, TANG L P. Impact of cascading processes of urban expansion and cropland reclamation on the ecosystem of a carbon storage service in Hubei Province,China[J]. Acta Ecol Sin, 2019, 10(2):672-683.DOI: 10.5846/stxb201712042177.
[29]
昌亭, 周生路, 戴靓, 等. 金坛市土地生态质量的城乡梯度规律研究[J]. 水土保持研究, 2014, 21(3):130-135.
CHANG T, ZHOU S L, DAI L, et al. Study on urban and rural gradient rule of land ecological quality in Jintan City[J]. Res Soil Water Conserv, 2014, 21(3):130-135.DOI: 10.13869/j.cnki.rswc.2014.03.025.
[30]
许萍萍, 赵言文, 陈颢明, 等. 江苏省农田生态系统碳源/汇、碳足迹动态变化[J]. 水土保持通报, 2018, 38(5):238-243.
XU P P, ZHAO Y W, CHEN H M, et al. Dynamic change of carbon source/sink and carbon footprint of farmland ecosystem in Jiangsu Province[J]. Bull Soil Water Conserv, 2018, 38(5):238-243.DOI: 10.13961/j.cnki.stbctb.2018.05.038.
[31]
尹鑫, 沙海飞, 张海滨, 等. 基于分区分类功能的江苏省河湖空间管控框架[J]. 水资源保护, 2020, 36(6):86-92.
YIN X, SHA H F, ZHANG H B, et al. Spatial control framework of rivers and lakes in Jiangsu Province based on function of zoning and classification[J]. Water Resources Protection, 2020, 36(6):86-92. DOI: 10.3880/j.issn.1004-6933.2020.06.014.

RIGHTS & PERMISSIONS

Copyright reserved © 2021.
PDF(7040 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/