Parameters sensitivity and applicability evaluations of AnnAGNPS model in a small watershed of the Yangtze River Delta

ZHANG Shuifeng, ZHANG Jinchi, ZHUANG Jiayao, WANG Xinmeng, ZHANG Siyu

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (3) : 183-192.

PDF(2435 KB)
PDF(2435 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (3) : 183-192. DOI: 10.12302/j.issn.1000-2006.202005003

Parameters sensitivity and applicability evaluations of AnnAGNPS model in a small watershed of the Yangtze River Delta

Author information +
History +

Abstract

【Objective】 The sensitivity and applicability of the agricultural non-point source pollution model AnnAGNPS to the Peiqiao River watershed were studied to provide data supports and a scientific basis for the comprehensive watershed management in the Yangtze River Delta. 【Method】 The study area is Peiqiao River watershed of Shuiyang River system in the middle and lower reaches of the Yangtze River. A differential sensitivity analysis (DSA) method was used for a parameter sensitivity analysis, and the applicability of the model was comprehensively evaluated using correlation coefficient (R2), efficiency coefficient (E) and relative error (ER). 【Result】 The parameter with the highest degree of output sensitivity to runoff, total nitrogen, total phosphorus and sediment in the studied area was the curve number (CN). Soil erosion factor (K), soil and water conservation factor (P), and crop management factor (C), all had positive correlations and effects. The R2 and E of runoff, sediment, total nitrogen, and total phosphorus in the flood season and non-flood season from 2015 to 2018 were all greater than 0.80, and the absolute value of ER was less than 12%. The simulation accuracy of runoff and sediment in the flood season was higher than that in the non-flood season, while the simulation accuracy of total nitrogen and total phosphorus in the non-flood season was slightly higher than that in the flood season. 【Conclusion】The calibrated AnnAGNPS model has a good simulation effect and reliable results in the Peiqiao River watershed and could be used to assist decision-makings on non-point source pollution and soil erosion management in a small agricultural watershed of the hill region of the Yangtze River Delta.

Key words

agricultural small watershed of the Yangtze River Delta / agricultural non-point source pollution model (AnnAGNPS) / parameters sensitivity / applicability evaluation / Peiqiao River watershed

Cite this article

Download Citations
ZHANG Shuifeng , ZHANG Jinchi , ZHUANG Jiayao , et al . Parameters sensitivity and applicability evaluations of AnnAGNPS model in a small watershed of the Yangtze River Delta[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(3): 183-192 https://doi.org/10.12302/j.issn.1000-2006.202005003

References

[1]
THORNTON J A. Assessment and control of non-point source pollution of aquatic ecosystem[M]. New York: The Parthenon Publishing Group, 1999.
[2]
BAGINSKA B, MILNE-HOME W, CORNISH P S. Modelling nutrient transport in currency creek,NSW with AnnAGNPS and PEST[J]. Environ Model Softw, 2003,18(8/9):801-808.DOI: 10.1016/s1364-8152(03)00079-3.
[3]
YUAN Y, LOCKE M A, BINGNER R L. Annualized agricultural non-point source model application for Mississippi Delta Beasley Lake watershed conservation practices assessment[J]. J Soil Water Conserv, 2008,63(6):542-551.DOI: 10.2489/jswc.63.6.542.
[4]
吴永波. 河岸植被缓冲带减缓农业面源污染研究进展[J]. 南京林业大学学报(自然科学版), 2015,39(3):143-148.
WU Y B. Research progress on the riparian vegetation buffer strip functions on agricultural nonpoint source pollution reduction[J]. J Nanjing For Univ (Nat Sci Ed), 2015,39(3):143-148.DOI: 10.3969/j.issn.1000-2006.2015.03.028.
[5]
KARKI R, TAGERT M L M, PAZ J O, et al. Application of AnnAGNPS to model an agricultural watershed in east-central Mississippi for the evaluation of an on-farm water storage (OFWS) system[J]. Agric Water Manag, 2017,192:103-114.DOI: 10.1016/j.agwat.2017.07.002.
[6]
CHAHOR Y, CASALÍ J, GIMÉNEZ R, et al. Evaluation of the AnnAGNPS model for predicting runoff and sediment yield in a small Mediterranean agricultural watershed in Navarre (Spain)[J]. Agric Water Manag, 2014,134:24-37.DOI: 10.1016/j.agwat.2013.11.014.
[7]
ZHANG T, YANG Y H, NI J P, et al. Best management practices for agricultural non-point source pollution in a small watershed based on the AnnAGNPS model[J]. Soil Use Manage, 2020,36(1):45-57.DOI: 10.1111/sum.12535.
[8]
吴殿鸣, 薛建辉, 吴永波. 生态防护林减轻农田氮素面源污染的研究进展[J]. 南京林业大学学报(自然科学版), 2011,35(6):134-138.
WU D M, XUE J H, WU Y B. Reviews on effects of ecological shelterbelts on alleviating non-point source pollution of nitrogen[J]. J Nanjing For Univ(Nat Sci Ed), 2011,35(6):134-138.DOI: 101.3969/j/issn.1000-2006.2011.06.028.
[9]
张桂轲. 长江流域上游非点源污染及其对水文过程的响应研究[D]. 北京:清华大学, 2016.
ZHANG G K. The non-point source pollution and the response to the hydrological processes of upper reaches of the Yangtze River[D]. Beijing:Tsinghua University, 2016.
[10]
周亮, 徐建刚, 孙东琪, 等. 淮河流域农业非点源污染空间特征解析及分类控制[J]. 环境科学, 2013,34(2):547-554.
ZHOU L, XU J G, SUN D Q, et al. Spatial heterogeneity and classified control of agricultural non-point source pollution in Huaihe River basin[J]. Environ Sci, 2013,34(2):547-554. DOI: 10.13227/j.hjkx.2013.02.020.
[11]
徐勇峰, 陈子鹏, 吴翼, 等. 环洪泽湖区域农业面源污染特征及控制对策[J]. 南京林业大学学报(自然科学版), 2016,40(2):1-8.
XU Y F, CHEN Z P, WU Y, et al. Advances on agricultural non-point source pollution and the control in regions around Hungtse Lake[J]. J Nanjing For Univ (Nat Sci Ed), 2016,40(2):1-8.DOI: 10.3969/j.issn.1000-2006.2016.02.001.
[12]
包鑫, 江燕. 半干旱半湿润地区流域非点源污染负荷模型研究进展[J]. 应用生态学报, 2020,31(2):674-684.
BAO X, JIANG Y. Research progress on non-point source pollution models for semi-arid and semi-humid watersheds[J]. Chin J Appl Ecol, 2020,31(2):674-684.DOI: 10.13287/j.1001-9332.202002.039.
[13]
国家统计局. 农业生产跃上新台阶现代农业擘画新蓝图——新中国成立70周年经济社会发展成就系列报告之十二[EB/OL].(2019-08-05)[2020-01-30]. http://www.stats.gov.cn/tjsj/zxfb/201908/t20190805_1689117.html.
[14]
新华网. 我国化肥使用量占全球三成凸显“肥”之烦恼[EB/OL].(2015-03-17)[2020-02-15]. .
[15]
金书秦, 牛坤玉, 韩冬梅. 农业绿色发展路径及其“十四五”取向[J]. 改革, 2020(2):30-39.
JIN S Q, NIU K Y, HAN D M. The path of agricultural green development and its orientation in the 14th Five-Year Plan period[J]. Reform, 2020(2):30-39.
[16]
农业部. 《到2020年化肥使用量零增长行动方案》基本原则和目标任务[J]. 磷肥与复肥, 2015,30(4):4.
[17]
速水佑次郎, 神门善久. 农业经济论:新版[M]. 北京: 中国农业出版社, 2003.
YUJIRO H, YOSHIHISE G. Agricultural economics:new edition[M]. Beijing: China Agriculture Press, 2003.
[18]
水利部. 2018中国河流泥沙公报[R/OL]. (2019-06-18)[2020-02-15]. http://www.mwr.gov.cn/sj/tjgb/zghlnsgb/201906/t20190618_1342326.html.
[19]
水利部长江水利委员会. 2018年长江流域水土保持公告[R/OL]. (2019-12-02)[2020-02-15]. http://www.cjw.gov.cn/style2013/pdf/web/?file=/UploadFiles/zwzc/2019/12/201912021529412477.pdf.
[20]
BINGNER R L, THEURER F D. AnnAGNPS technical processes documentation Version 3.2[Z]. Washington DC: USDA-ARS, 2005.
[21]
边金云. AnnAGNPS模型在四岭水库小流域非点源控制中的应用研究[D]. 杭州:浙江大学, 2012.
BIAN J Y. The application of AnnAGNPS model in non-point source pollution control in Siling Reservoir watershed[D]. Hangzhou: Zhejiang University, 2012.
[22]
席庆. 基于AnnAGNPS模型的中田河流域土地利用变化对氮磷营养盐输出影响模拟研究[D]. 南京:南京农业大学, 2014.
XI Q. Effects of land use change on nutrient export in Zhongtian River watershed based on the AnnAGNPS model[D]. Nanjing:Nanjing Agricultural University, 2014.
[23]
钟科元. AnnAGNPS模型参数空间聚合水文效应研究[D]. 福州:福建师范大学, 2015.
ZHONG K Y. Hydrological response to parameter spatial aggregation in AnnAGNPS[D]. Fuzhou:Fujian Normal University, 2015.
[24]
章青青. 基于AnnAGNPS模型的灞河流域非点源污染模拟研究[D]. 西安:陕西科技大学, 2018.
ZHANG Q Q. Simulation and research of non-point source based on AnnAGNPS model in Bahe River of China[D]. Xi’an:Shaanxi University of Science and Technology, 2018.
[25]
吴道祥. 基于AnnAGNPS模型的山美水库流域氮非点源污染控制研究[D]. 福州:福建师范大学, 2017.
WU D X. Simulation of agricultural non-point source pollution in Shanmei Reservoir watershed base on AnnAGNPS[D]. Fuzhou:Fujian Normal University, 2017.
[26]
高瑞梅. 基于AnnAGNPS模型的罗李村流域水文模拟与评价[D]. 西安:陕西科技大学, 2017.
GAO R M. Simulation and evaluation of the hydrologic process based on AnnAGNPS model in Luoli-Cun watershed of China[D]. Xi’an:Shaanxi University of Science and Technology, 2017.
[27]
NOSSENT J, BAUWENS W. Multi-variable sensitivity and identifiability analysis for a complex environmental model in view of integrated water quantity and water quality modeling[J]. Water Sci Technol, 2012,65(3):539-549.DOI: 10.2166/wst.2012.884.
[28]
DIAZ-RAMIREZ J N, MCANALLY W H, MARTIN J L. Sensitivity of simulating hydrologic processes to gauge and radar rainfall data in subtropical coastal catchments[J]. Water Resour Manage, 2012,26(12):3515-3538.DOI: 10.1007/s11269-012-0088-z.
[29]
李海东, 林杰, 张金池, 等. 小流域尺度下土壤有机碳和全氮空间变异特征[J]. 南京林业大学学报(自然科学版), 2008,32(4):38-42.
LI H D, LIN J, ZHANG J C, et al. Spatial variability of soil organic carbon and total nitrogen based on small watershed scale[J]. J Nanjing For Univ (Nat Sci Ed), 2008,32(4):38-42.
[30]
高淳年鉴编纂委员会. 高淳年鉴2018[M]. 南京: 江苏凤凰文艺出版, 2018.
Gaochun Yearbook Compilation Committee. Gaochun Yearbook:2018[M]. Nanjing: Jiangsu Phoenix Literature and Art Publishing, 2018.
[31]
THORNTON P E, RUNNING S W. An improved algorithm for estimating incident daily solar radiation from measurements of temperature,humidity,and precipitation[J]. Agric For Meteorol, 1999,93(4):211-228.DOI: 10.1016/s0168-1923(98)00126-9.
[32]
翁笃鸣. 中国辐射气候[M]. 北京: 气象出版社, 1997.
WENG D M. Radiation climate in China[M]. Beijing: China Meteorological Press, 1997.
[33]
闫胜军. 岔口小流域AnnAGNPS模型验证和坡改梯生态效益分析[D]. 太谷:山西农业大学, 2014.
YAN S J. Validating the AnnAGNPS model in the Chakou watershed and analyzing the ecological benefit of turning slope land to terrace[D]. Taigu:Shanxi Agricultural University, 2014.
[34]
WILLIAMS J R, DYKE P T, JONES C A. Epic: a model for assessing the effects of erosion on soil productivity[M] //Developments in Environmental Modelling. Amsterdam: Elsevier, 1983: 553-572.DOI: 10.1016/b978-0-444-42179-1.50065-1.
[35]
NRCS. Part 630 Hydrology national engineering handbook,chapter 7: hydrologic soil group[M]. New York:US Department of Agriculture, 2009.
[36]
车振海. 试论土壤渗透系数的经验公式和曲线图[J]. 东北水利水电, 1995(9):17-19.DOI: 10.14124/i.cnki.dbslsd22-1097.1995.09.005.
[37]
胡连伍, 王学军, 罗定贵, 等. 不同子流域划分对流域径流、泥沙、营养物模拟的影响——丰乐河流域个例研究[J]. 水科学进展, 2007,18(2):235-240.
HU L W, WANG X J, LUO D G, et al. Effect of sub-watershed partitioning on flow,sediment and nutrient predictions:case study in Fengle River watershed[J]. Adv Water Sci, 2007,18(2):235-240.DOI: 10.14042j.cnki.32.1309.2007.02.014.
[38]
PARAJULI P B, NELSON N O, FREES L D, et al. Comparison of AnnAGNPS and SWAT model simulation results in USDA-CEAP agricultural watersheds in south-central Kansas[J]. Hydrol Process, 2009,23(5):748-763.DOI: 10.1002/hyp.7174.
[39]
SUTTLES J B, VELLIDIS G, BOSCH D D, et al. Watershed scale simulation of sediment andnutrient loads in Georgia coastal plain streams using the annualized agnps model[J]. Trans ASAE, 2003,46(5):1325-1335.DOI: 10.13031/2013.15443.
[40]
LENHART T, ECKHARDT K, FOHRER N, et al. Comparison of two different approaches of sensitivity analysis[J]. Phys Chem Earth: Parts A/B/C, 2002,27(9/10):645-654.DOI: 10.1016/s1474-7065(02)00049-9.
[41]
梁丽营, 高振刚, 刘德财, 等. AnnAGNPS模型在西南岩溶地区奇峰河流域的参数敏感性及适用性分析[J]. 农业环境科学学报, 2020,39(3):590-600.
LIANG L Y, GAO Z G, LIU D C, et al. Parameter sensitivity and applicability analysis of AnnAGNPS model in Qifeng River watershed in the southwest Karst area of China[J]. J Agro-Environ Sci, 2020,39(3):590-600.DOI: 10.11654/jaes.2019-1111.
[42]
LEGATES D R, MCCABE G J J. Evaluating the use of “Goodness-of-fit” measures in hydrologic and hydroclimatic model validation[J]. Water Resour Res, 1999,35(1):233-241.DOI: 10.1029/1998wr900018.
[43]
MORIASI D N, ARNOLD J G, LIEW M W V, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Trans ASABE, 2007,50(3):885-900.DOI: 10.13031/2013.23153.
[44]
SALEH A, ARNOLD J G, GASSMAN P W, et al. Application of SWAT for the upper north Bosque River watershed[J]. Trans ASAE, 2000,43(5):1077-1087.DOI: 10.13031/2013.3000.
[45]
张泳华, 刘祖发, 赵铜铁钢, 等. 东江流域基流变化特征及影响因素[J]. 水资源保护, 2020,36(4):75-81.
ZHANG Y H, LIU Z F, ZHAO T T G, et al. Variation characteristics and influencing factors of base flow in Dongjiang River basin[J]. Water Resour Prot, 2020,36(4):75-81.DOI: 10.3880/j.issn.1004-6933.2020.04.012.
[46]
NATHAN R J, MCMAHON T A. Evaluation of automated techniques for base flow and recession analyses[J]. Water Resour Res, 1990,26(7):1465-1473.DOI: 10.1029/wr026i007p01465.
[47]
李瑞, 张士锋. 两种自动基流分割方法在干旱半干旱地区的对比研究[J]. 地理科学进展, 2017,36(7):864-872.
Abstract
基流是河川径流的重要组成部分。在干旱半干旱地区,基流对于维持水源的稳定性及持续性、确定河流生态需水等方面具有重要作用。因此,基流分割结果的准确性至关重要。本文以黄河流域上游小流域为研究区,分别使用滑动最小值法和数字滤波法对典型年进行基流分割,然后用数字滤波法对1980-2014年日均径流进行基流分割,并分析基流的变化趋势。研究表明,数字滤波法在干旱半干旱地区具有较好的应用效果,滑动最小值法分割的基流结果偏小;在特定研究区的参数难以确定时,应结合两种方法的优点确定最佳的基流分割方案。研究区1980-2014年的平均基流指数为0.69,高于全国平均值0.26、西北诸河区的0.57及黄河区的0.43;趋势分析显示,研究区的年径流、基流、BFI的增长幅度分别为0.086 (m<sup>3</sup>/s)/10a、0.169 (m<sup>3</sup>/s)/10a、0.038/10a。MK趋势检验结果显示,年径流未通过10%的显著性检验,增长趋势不明显;基流和BFI分别通过了2.5%和1%的显著性检验,增长趋势显著。
LI R, ZHANG S F. Comparative study on two automatic baseflow separation methods in the arid and semi-arid regions[J]. Prog Geogr, 2017,36(7):864-872.DOI: 10.18306/dlkxjz.2017.07.008.

RIGHTS & PERMISSIONS

Copyright reserved © 2021
PDF(2435 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/