Response of readily oxidized carbon to arbuscular mycorrhizal (AM) fungi inoculations in rocky desert soil, Xundian, Yunnan Province

WANG Shaojun, ZUO Qianqian, CAO Qianbin, WANG Ping, YANG Bo, ZHAO Shuang, CHEN Minkun

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (1) : 7-14.

PDF(1567 KB)
PDF(1567 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (1) : 7-14. DOI: 10.12302/j.issn.1000-2006.202006021

Response of readily oxidized carbon to arbuscular mycorrhizal (AM) fungi inoculations in rocky desert soil, Xundian, Yunnan Province

Author information +
History +

Abstract

【Objective】Mycorrhizal technology may play a critical role in improving soil nutrient conditions, becoming an important biological approach to restore vegetation and soils in rocky desert areas. Readily oxidized carbon (ROC) is sensitive in its response to altered soil variables. This study aimed to reveal changes in the organic carbon pool and soil nutrient properties driven by the symbiosis between arbuscular mycorrhizal fungi (AM) and host plants in rocky desert habitats. We also attempted to elucidate the response of ROC accumulation to these changes.【Method】We inoculated Alnus nepalensis seedlings with three AM species in rocky desert soils sampled in Xundian, Yunnan Province, China. Four treatments were established to explore the association of altered ROC concentration with changes in the carbon pool, soil nutrients, and plant growth for rocky desert habitats: (1) Funneliformis mosseae (FM); (2) Claroideoglomus etunicatum (CE); (3) Rhizophagus intraradices (RI); (4) without AM and plant (CK). The ROC concentrations in the four treatments were determined by potassium permanganate oxidation.【Result】 The symbiosis and growth of host plants were significantly enhanced in the three AM species. The RI fungi had the highest infection effectiveness; the infection rate and density of RI fungi increased by 155% and 100%, respectively, compared with the control. The RI fungi also significantly enhanced the tree height (by 60%) and base diameter (by 46%) of seedlings. Three AM fungal species increased the soil ROC concentration; this increased rate was ranked in descending order as: RI (122%) > CE (78%) > FM (61%). The ROC concentration accounted for the largest proportion in the total organic carbon (TOC) pool. The greatest proportion of ROC was 52%, which was much higher than the microbial biomass carbon (3%-6%). The improvement rate of soil nutrients by the three AM fungi was ranked in descending order as: RI > CE > FM. The RI fungi strongly increased plant available nitrogen (161%), microbial biomass carbon (127%), TOC (110%), and plant available phosphorus (97%). The infection rate of AM fungi (96%), plant available nitrogen (94%), microbial biomass carbon (85%), TOC (78%), and plant available phosphorus (72%) obviously contributed to ROC changes. 【Conclusion】 The data indicate that the symbiosis of AM fungi with A. nepalensis can induce alterations in the soil carbon pool and nutrient properties alongside improving plant growth; this drives the accumulation of oxidized organic carbon in rocky desert soil. The results also help to elucidate the microbiological mechanisms regulating plant growth, soil restoration, and active organic carbon deposition in rocky desert habitats.

Key words

rocky desertification / Alnus nepalensis / arbuscular mycorrhizal (AM) fungi / readily oxidized carbon (ROC) / soil carbon pool / soil properties / plant available nutrients

Cite this article

Download Citations
WANG Shaojun , ZUO Qianqian , CAO Qianbin , et al . Response of readily oxidized carbon to arbuscular mycorrhizal (AM) fungi inoculations in rocky desert soil, Xundian, Yunnan Province[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(1): 7-14 https://doi.org/10.12302/j.issn.1000-2006.202006021

References

[1]
陈晓侠, 梁爱珍, 张晓平. 土壤团聚体固碳的研究方法[J]. 应用生态学报, 2012, 23(7):1999-2006.
CHEN X X, LIANG A Z, ZHANG X P. Research methods of carbon sequestration by soil aggregates: a review[J]. Chinese Journal of Applied Ecology, 2012, 23(7):1999-2006. DOI: 10.13287/j.1001-9332.2012.0229.
[2]
沈宏, 曹志洪, 王志明. 不同农田生态系统土壤碳库管理指数的研究[J]. 自然资源学报, 1999, 14(3):3-5.
SHEN H, CAO Z H, WANG Z M. Study of carbon pool management index in soils under different agroecosystems[J]. Journal of Natural Resources, 1999, 14(3):3-5. DOI: 10.11849/zrzyxb.1999.03.003.
[3]
谢涛, 郑阿宝, 王国兵, 等. 苏北不同林龄杨树林土壤活性碳的季节变化[J]. 生态学杂志, 2012, 31(5):1171-1178.
XIE T, ZHENG A B, WANG G B, et al. Seasonal variation patterns of soil labile organic carbon in poplar plantations with different ages in northern Jiangsu[J]. Chinese Journal of Ecology, 2012, 31(5):1171-1178. DOI: 10.1007/s11783-011-0280-z.
[4]
袁知洋, 邓邦良, 张学玲, 等. 武功山草甸植被小群落土壤活性有机碳与土壤养分的典型相关分析[J]. 中南林业科技大学学报, 2016, 36(2):84-90.
YUAN Z Y, DENG B L, ZHANG X L, et al. Canonical correlation analysis between soil active organic carbon and soil nutrient in different vegetation small communities of Wugong Mountain alpine meadow[J]. Journal of Central South University of Forestry & Technology, 2016, 36(2):84-90. DOI: 10.14067/j.cnki.1673-923x.2016.02.016.
[5]
王清奎, 汪思龙, 冯宗炜, 等. 土壤活性有机质及其与土壤质量的关系[J]. 生态学报, 2005, 25(3):513-519.
WANG Q K, WANG S L, FENG Z W, et al. Active soil organic matter and its relationship with soil quality[J]. Acta Ecologica Sinica, 2005, 25(3):513-519.DOI: 10.3321/j.issn:1000-0933.2005.03.019.
[6]
李阳兵, 谭秋, 王世杰. 喀斯特石漠化研究现状、问题分析与基本构架[J]. 中国水土保持科学, 2005, 3(3):27-34.
LI Y B, TAN Q, WANG S J. Current status, problems analysis and basic framework of Karst rocky desertification research[J]. Science of Soil and Water Conservation, 2005, 3(3):27-34. DOI: 10.3969/j.issn.1672-3007.2005.03.006.
[7]
王邵军, 李霁航, 陆梅, 等. “AM真菌-根系-土壤”耦合作用机制研究进展[J]. 中南林业科技大学学报, 2019, 39(12):1-9.
WANG S J, LI J H, LU M, et al. Advance on the mechanism of coupling interactions among AM fungi,roots and soils[J]. Journal of Central South University of Forestry & Technology, 2019, 39(12):1-9.DOI: 10.14067/j.cnki.1673-923x.2019.12.001.
[8]
SMITH S E, READ D J. Mycorrhizal Symbiosis [M]. 3rd ed. Cambridge, UK:Academic Press, 2008. DOI: 10.1016/B978-012652840-4/50001-2.
[9]
刘润进, 李晓林. 丛枝菌根及其应用[M]. 北京: 科学出版社, 2000:1-7.
LIU R J, LI X L. Arbuscular mycorrhiza and its application[M]. Beijing: Science Press, 2000:1-7.
[10]
魏源, 王世杰, 刘秀明, 等. 丛枝菌根真菌及在石漠化治理中的应用探讨[J]. 地球与环境, 2012, 40(1):84-92.
WEI Y, WANG S J, LIU X M, et al. Arbuscular mycorrhizal fungi and their application in Karst rocky desertification control[J]. Earth and Environment, 2012, 40(1):84-92. DOI: 10.14050/j.cnki.1672-9250.2012.01.013.
[11]
王如岩, 于水强, 张金池, 等. 菌根真菌在退化喀斯特地区植被恢复中的应用[J]. 林业科技开发, 2010, 24(5):4-7.
WANG R Y, YU S Q, ZHANG J C, et al. Mycorrhizal fungi in the degradation process of Karst areas of vegetation[J]. China Forestry Science and Technology, 2010, 24(5):4-7. DOI: 10.3969/j.issn.1000-8101.2010.05.002.
[12]
GIOVANNETTI M, MOSSE B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots[J]. New Phytologistl, 1980, 84(3):489-500. DOI: 10.1111/j.1469-8137.1980.tb04556.x.
[13]
JAKOBSEN I, ABBOTT L K, ROBSON A D. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L.2:Hyphal transport of 32P over defined distances[J]. New Phytologis, 1992, 120(4):509-516.DOI: 10.1111/j.1469-8137.1992.tb01800.x.
[14]
SUBBIAH B V, ASIJA G L. A rapid procedure for the estimation of available N of soils[J]. Current Science, 1956, 25:259-260.
[15]
VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology & Biochemistry, 1987, 19(6):703-707.DOI: 10.1016/0038-0717(87)90052-6.
[16]
OLSEN S R, COLE C V, WATANABE F S, et al. Estimation of available phosphorus in soils by extraction with sodium bicarbonate[J]. USDA. Circular, 1954, 939:1-8.
[17]
GRIME J P, MACKEY J M, HILLIER S H, et al. Mycorrhizal infection and plant species diversity[J]. Nature, 1988, 334(6179):202. DOI: 10.1038/334202b0.
[18]
欧静, 何跃军, 刘仁阳, 等. 杜鹃花类菌根真菌对桃叶杜鹃幼苗光合性能及叶绿素荧光参数的影响[J]. 生物学通报, 2013, 40(8):1423-1436.
OU J, HE Y J, LIU R Y, et al. Effects of inoculation with different ERM isolates on photosynjournal and chlorophyll fluorescence parameter of Rhododendron annae Franch. seedlings[J]. Microbiology China, 2013, 40(8):1423-1436. DOI: 10.13344/j.microbiol.china.2013.08.003.
[19]
常双双, 王承南, 王森, 等. 5 种丛枝菌根真菌对君迁子幼苗光合生长的影响[J]. 经济林研究, 2016, 34(2):79-85.
CHANG S S, WANG C N, WANG S, et al. Effects of inoculating different kinds of AMF on growth of seedlings in Diospyros lotus[J]. Nonwood Forest Research, 2016, 34(2):79-85. DOI: 10.14067/j.cnki.1003-8981.2016.02.015.
[20]
彭旭东, 戴全厚, 李昌兰. 中国西南喀斯特坡地水土流失/漏失过程与机理研究进展[J]. 水土保持学报, 2017, 31(5):1-8.
PENG X D, DAI Q H, LI C L. Research progress on the process and mechanism of soil water loss or leakage on slope in southwest Karst of China[J]. Journal of Soil and Water Conservation, 2017, 31(5):1-8.DOI: 10.13870/j.cnki.stbcxb.2017.05.001.
[21]
吴金平, 顾玉成. 丛枝菌根真菌(AMF)在土壤修复中的生态应用[J]. 中国农学通报, 2009, 25(7):243-245.
WU J P, GU Y C. The application of ecology in soil rehabilitation for arbuscular mycorrhiza fungi[J]. Chinese Agricultural Science Bulletin, 2009, 25(7):243-245.
[22]
张中峰, 张金池, 黄玉清, 等. 丛枝菌根真菌对植物耐旱性的影响研究进展[J]. 生态学杂志, 2013, 32(6):1607-1612.
ZHANG Z F, ZHANG J C, HUANG Y Q, et al. Effects of arbuscular mycorrhizal fungi on plant drought tolerance: research progress[J]. Chinese Journal of Ecology, 2013, 32(6):1607-1612. DOI: 10.13292/j.1000-4890.2013.0271.
[23]
刘明慧, 孙雪, 于文杰, 等. 长白山不同海拔原始红松林土壤活性有机碳含量的生长季动态[J]. 南京林业大学学报(自然科学版), 2018, 42(2):67-74.
LIU M H, SUN X, YU W J, et al. Seasonal dynamics of soil active organic carbon content in the original Pinus koraiensis forest in Changbai Mountains, China[J]. Journal Nanjing For Univ (Nat Sci Ed), 2018, 42(2), 67-74. DOI: 10.3969/j.issn.1000-2006.201706040.
[24]
张翔鹤. 金银花根围AM真菌时空分布及其与碳氮关系研究[D]. 保定:河北大学, 2012.
ZHANG X H. Research of AM fungal distribution and the relationship with soil carbon and nitrogen in the rhizosphere of Lonicera japonica[D]. Baoding:Hebei University, 2012.
[25]
王霖娇, 李瑞, 盛茂银. 典型喀斯特石漠化生态系统土壤有机碳时空分布格局及其与环境的相关性[J]. 生态学报, 2017, 37(5):1367-1378.
WANG L J, LI R, SHENG M Y. Distribution of soil organic carbon related to environmental factors in typical rocky desertification ecosystems[J]. Acta Ecologica Sinica, 2017, 37(5):1367-1378. DOI: 10.5846/stxb201510152081
[26]
罗海波, 刘方, 刘元生, 等. 喀斯特石漠化地区不同植被群落的土壤有机碳变化[J]. 林业科学, 2009, 45(9):24-28.
LUO H B, LIU F, LIU Y S, et al. Variation of forest soil organic carbon in Karst rocky desertification area[J]. Scientia Silvae Sinicae, 2009, 45(9):24-28.DOI: 10.3321/j.issn:1001-7488.2009.09.005.
[27]
童琳. 亚热带森林菌根对植物生长与土壤碳动态的影响[D]. 北京:中国科学院大学, 2015.
TONG L. Effects of mycorrhiza on plant growth and soil carbon dynamics in subtropical forests[D]. Beijing:University of Chinese Academy of Sciences, 2015.
[28]
ZHAO M X, ZHOU J B, KALBITZ K. Carbon mineralization and properties of water-extractable organic carbon in soils of the south Loess Plateau in China[J]. European Journal of Soil Biology, 2008, 44(2):158-165.DOI: 10.1016/j.ejsobi.2007.09.007.
[29]
张哲, 王邵军, 李霁航, 等. 土壤易氧化有机碳对西双版纳热带森林群落演替的响应[J]. 生态学报, 2019, 39(17):6257-6263.
ZHANG Z, WANG S J, LI J H, et al. Response of soil readily oxidizable carbon to community succession of Xishuangbanna tropical forests[J]. Acta Ecol Sin, 2019, 39(17):6257-6263.DOI: 10.5846/stxb201806021230.
[30]
胡宁, 马志敏, 蓝家程, 等. 石漠化区植被恢复过程凋落叶分解特征及其对土壤有机碳/氮的影响:以重庆中梁山为例[J]. 中国岩溶, 2016, 35(5):539-549.
HU N, MA Z M, LAN J C, et al. Leaf litter decomposition characters and impact on soil organic carbon/nitrogen in different vegetation restorations of Karst rocky desertification:an example of the Zhongliang Mountain in Chongqing[J]. Carsologica Sinica, 2016, 35(5):539-549.DOI: 10.11932/karst20160510.
[31]
CHEN X M, LIU J X, DENG Q, et al. Effects of elevated CO2 and nitrogen addition on soil organic carbon fractions in a subtropical forest[J]. Plant Soil, 2012, 357(1/2):25-34.DOI: 10.1007/s11104-012-1145-3.
[32]
舒玉芳, 叶娇, 潘程远, 等. 三峡库区桑树菌根发育特征及菌根对桑苗生长的促进作用[J]. 蚕业科学, 2011, 37(6):978-984.
SHU Y F, YE J, PAN C Y, et al. Developmental features of mycorrhiza and its promotion effect on growth of mulberry saplings in Three Gorges Reservoir Region[J]. Science of Sericulture, 2011, 37(6):978-984.DOI: 10.3969/j.issn.0257-4799.2011.06.002.
[33]
施瑶, 王忠强, 张心昱, 等. 氮磷添加对内蒙古温带典型草原土壤微生物群落结构的影响[J]. 生态学报, 2014, 34(17):4943-4949.
SHI Y, WANG Z Q, ZHANG X Y, et al. Effects of nitrogen and phosphorus addition on soil microbial community composition in temperate typical grassland in Inner Mongolia[J]. Acta Ecologica Sinica, 2014, 34(17):4943-4949. DOI: 10.5846/stxb201306081430.
[34]
QUINTERO-RAMOS M, ESPINOZA-VICTORIA D, FERRERA-CERRATO R, et al. Fitting plants to soil through mycorrhizal fungi: mycorrhiza effects on plant growth and soil organic matter[J]. Biology & Fertility of Soils, 1993, 15(2):103-106.DOI: 10.1007/bf00336426.
[35]
王棣, 耿增超, 佘雕, 等. 秦岭典型林分土壤活性有机碳及碳储量垂直分布特征[J]. 应用生态学报, 2014, 25(6):1569-1577.
WANG D, GENG Z C, SHE D, et al. Vertical distribution of soil active carbon and soil organic carbon storage under different forest types in the Qinling Mountains[J]. Chinese Journal of Applied Ecology, 2014, 25(6):1569-1577.DOI: 10.13287/j.1001-9332.20140415.014.
[36]
王国兵, 赵小龙, 王明慧, 等. 苏北沿海土地利用变化对土壤易氧化碳含量的影响[J]. 应用生态学报, 2013, 24(4):921-926.
WANG G B, ZHAO X L, WANG M H, et al. Effects of land use change on soil readily oxidizable carbon in a coastal area of northern Jiangsu Province, east China[J]. Chinese Journal of Applied Ecology, 2013, 24(4):921-926. DOI: 10.13287/j.1001-9332.2013.0246.

RIGHTS & PERMISSIONS

Copyright reserved © 2022
PDF(1567 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/