Research trends and future key issues of global harvested wood products carbon science

YANG Hongqiang, YU Zhihan

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (4) : 219-228.

PDF(2087 KB)
PDF(2087 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (4) : 219-228. DOI: 10.12302/j.issn.1000-2006.202006029

Research trends and future key issues of global harvested wood products carbon science

Author information +
History +

Abstract

【Objective】Forests play an important role in the global carbon cycle. As an extension of forest resource utilization, harvested wood products are important carbon pools for climate change mitigation. By clarifying the main life cycle stages of harvested wood products, and summarizing the relevant research hotspots and possible future research directions of carbon in harvested wood products, it is of great scientific significance to rationally evaluate the climate function of harvested wood products. 【Method】Based on the life cycle process of harvested wood products, this paper summarizes the research trends and scientific challenges that may be faced in the future regarding the carbon science of harvested wood products in three stages: forest, in-use, and landfill. 【Result】 ① In the forest stage, existing studies mostly used the empirical model as a supplement to the process model to calculate and predict forest carbon stocks. The scenario simulation and material flow analysis can combine the forest stage with the in-use stage by using transport and production processes to seek the best forest management strategy. ② In the in-use stage, the choice of carbon accounting approaches is the focus of international controversy. The substitution effect of harvested wood products is also a major issue that cannot be ignored in the carbon accounting process because of its cumulative and permanent nature. ③ In the landfill stage, harvested wood products decompose slowly or do not decompose at all, consequently storing carbon for a longer time. The first-order decay method is a common model used for estimating the change in carbon storage in solid waste disposal sites. The key parameters associated with methane emission, such as the fraction of degradable organic carbon and the proportion of methane production, are the emphasis of the current study. 【Conclusion】① Improving the measurement model of forest carbon sinks can reduce the uncertainty of forest carbon accounting. ② Reasonable estimation of the displacement factors of harvested wood products and the time required to achieve “carbon neutrality” are conducive to the formulation of policies regarding the energy and forest management. ③ Considering the recovery and reuse of methane in solid waste disposal sites can improve the accuracy of carbon accounting in the entire life cycle of harvested wood products. ④ Improving forest inventory methods and perfecting the database of the forest product life cycle can facilitate a more accurate assessment of the mitigation potential of greenhouse gas emissions from harvested wood products. ⑤ Harmonizing carbon accounting methodologies on a global scale, equitably identifying the ownership of carbon stocks and as well as rationalizing the distribution of carbon emissions among trading countries, will help to accelerate international negotiations on issues related to harvested wood products.

Key words

harvested wood products / life cycle / carbon accounting / reduced emissions through wood substitution / carbon neutrality

Cite this article

Download Citations
YANG Hongqiang , YU Zhihan. Research trends and future key issues of global harvested wood products carbon science[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(4): 219-228 https://doi.org/10.12302/j.issn.1000-2006.202006029

References

[1]
IPCC. Climate change 2013: The physical science basis[M]. Cambridge, New York: Cambridge University Press, 2013.
[2]
IPCC. Climate change 2014: Mitigation of climate change[M]. Cambridge, New York: Cambridge University Press, 2014.
[3]
IPCC. Global warming of 1.5 ℃[M]. Cambridge, New York: Cambridge University Press, 2018.
[4]
PAN Y, BIRDSEY R A, FANG J, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333(6045):988-993. DOI: 10.1126/science.1201609.
[5]
白彦锋, 姜春前, 张守攻, 等. 气候变化谈判中木质林产品的相关概念及其碳储量核算[J]. 林业科学, 2011, 47(1):158-164.
BAI Y F, JIANG C Q, ZHANG S G, et al. Definitions and carbon stocks accounting approaches of harvested wood products in climate change negotiation[J]. Sci Silvae Sin, 2011, 47(1):158-164.
[6]
WINJUM J K, BROWN S, SCHLAMADINGER B. Forest harvests and wood products:sources and sinks of atmospheric carbon dio-xide[J]. For Sci, 1998, 44(2):272-284.DOI: 10.1093/forestscience/44.2.272.
[7]
GREEN C, AVITABILE V, FARRELL E P, et al. Reporting harvested wood products in national greenhouse gas inventories:implications for Ireland[J]. Biomass Bioenergy, 2006, 30(2):105-114.DOI: 10.1016/j.biombioe.2005.11.001.
[8]
CHEN J X, COLOMBO S J, TER-MIKAELIAN M T, et al. Carbon profile of the managed forest sector in Canada in the 20th century:sink or source?[J]. Environ Sci Technol, 2014, 48(16):9859-9866.DOI: 10.1021/es5005957.
[9]
JASINEVIČIUS G, LINDNER M, CIENCIALA E, et al. Carbon accounting in harvested wood products:assessment using material flow analysis resulting in larger pools compared to the IPCC default method[J]. J Ind Ecol, 2018, 22(1):121-131.DOI: 10.1111/jiec.12538.
[10]
SKOG K E. Sequestration of carbon in harvested wood products for the United States[J]. Forest Products Journal, 2008, 58(6):56-72. DOI: 10.1007/s10570-007-9194-0.
[11]
KOHLMAIER G, KOHLMAIER L, FRIES E, et al. Application of the stock change and the production approach to harvested wood products in the EU-15 countries:a comparative analysis[J]. Eur J For Res, 2007, 126(2):209-223.DOI: 10.1007/s10342-006-0130-x.
[12]
DIAS A C, LOURO M, ARROJA L, et al. Carbon estimation in harvested wood products using a country-specific method:portugal as a case study[J]. Environ Sci Policy, 2007, 10(3):250-259.DOI: 10.1016/j.envsci.2007.01.002.
[13]
KAYO C, TSUNETSUGU Y, TONOSAKI M. Climate change mitigation effect of harvested wood products in regions of Japan[J]. Carbon Balance Manag, 2015, 10(1):24.DOI: 10.1186/s13021-015-0036-3.
[14]
CANALS-REVILLA G G, GUTIERREZ-DEL OLMO E V, PICOS-MARTIN J, et al. Carbon storage in HWP: accounting for Spanish particleboard and fiberboard[J]. Forest Syst, 2014, 23(2):225.DOI: 10.5424/fs/2014232-04046.
[15]
LUN F, LI W H, LIU Y. Complete forest carbon cycle and budget in China,1999-2008[J]. For Ecol Manag, 2012, 264:81-89.DOI: 10.1016/j.foreco.2011.10.004.
[16]
IPCC. Revised 1996 IPCC guidelines for national greenhouse gas inventories[R]. Geneva: Intergovernmental Panel on Climate Change, 1996.
[17]
IPCC. 2006 IPCC guidelines for national greenhouse gas inventories[R]. Hayama: The Institute for Global Environmental Strategies (IGES) for the IPCC, 2006.
[18]
IPCC. 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventories[R]. Geneva: Intergovernmental Panel on Climate Change, 2019.
[19]
IPCC. 2013 revised supplementary methods and good practice gui-dance arising from the Kyoto protocol[R]. Geneva: Intergovern-mental Panel on Climate Change, 2014.
[20]
杨红强, 季春艺, 杨惠, 等. 全球气候变化下中国林产品的减排贡献:基于木质林产品固碳功能核算[J]. 自然资源学报, 2013, 28(12):2023-2033.
YANG H Q, JI C Y, YANG H, et al. Global climate change and China’s contribution to carbon reduction:based on carbon storage accounting of Chinese harvested wood products[J]. J Nat Resour, 2013, 28(12):2023-2033.DOI: 10.11849/zrzyxb.2013.12.001.
[21]
JI C Y, CAO W B, CHEN Y, et al. Carbon balance and contribution of harvested wood products in China based on the production approach of the intergovernmental panel on climate change[J]. Int J Environ Res Public Heal, 2016, 13(11):1132.DOI: 10.3390/ijerph13111132.
[22]
DIAS A C, ARROJA L, CAPELA I. Carbon storage in harvested wood products:implications of different methodological procedures and input data: a case study for Portugal[J]. Eur J For Res, 2012, 131(1):109-117.DOI: 10.1007/s10342-011-0515-3.
[23]
HEATH L S, SMITH J E, SKOG K E, et al. Managed forest carbon estimates for the US greenhouse gas inventory,1990-2008[J]. J For, 2011, 109(3):167-173.DOI: 10.1093/jof/109.3.167.
[24]
SATHRE R, O’CONNOR J. Meta-analysis of greenhouse gas displacement factors of wood product substitution[J]. Environ Sci Policy, 2010, 13(2):104-114.DOI: 10.1016/j.envsci.2009.12.005.
[25]
陈家新, 杨红强. 全球森林及林产品碳科学研究进展与前瞻[J]. 南京林业大学学报(自然科学版), 2018, 42(4):1-8.
CHEN J X, YANG H Q. Advances and frontiers in global forest and harvested wood products carbon science[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(4):1-8.DOI: 10.3969/j.issn.1000-2006.201801035.
[26]
XIMENES F, BJÖRDAL C, COWIE A, et al. The decay of wood in landfills in contrasting climates in Australia[J]. Waste Manag, 2015, 41:101-110.DOI: 10.1016/j.wasman.2015.03.032.
[27]
KRAUSE M J. Intergovernmental panel on climate change’s landfill methane protocol:reviewing 20 years of application[J]. Waste Manag Res, 2018, 36(9):827-840.DOI: 10.1177/0734242x18793935.
[28]
LIM B, BROWN S, SCHLAMADINGER B. Carbon accounting for forest harvesting and wood products:review and evaluation of different approaches[J]. Environ Sci Policy, 1999, 2(2):207-216.DOI: 10.1016/S1462-9011(99)00031-3.
[29]
GENG A X, YANG H Q, CHEN J X, et al. Review of carbon storage function of harvested wood products and the potential of wood substitution in greenhouse gas mitigation[J]. For Policy Econ, 2017, 85:192-200.DOI: 10.1016/j.forpol.2017.08.007.
[30]
CHEN J, TER-MIKAELIAN M T, NG P Q, et al. Ontario’s managed forests and harvested wood products contribute to greenhouse gas mitigation from 2020 to 2100[J]. For Chron, 2018, 43(3):269-282.DOI: 10.5558/tfc2018-040.
[31]
CHEN J X, TER-MIKAELIAN M T, YANG H Q, et al. Assessing the greenhouse gas effects of harvested wood products manufactured from managed forests in Canada[J]. Forestry (Lond), 2018, 91(2):193-205.DOI: 10.1093/forestry/cpx056.
[32]
PINGOUD K, EKHOLM T, SOIMAKALLIO S, et al. Carbon balance indicator for forest bioenergy scenarios[J]. Global Change Biology Bioenergy, 2016, 8(1):171-182. DOI: 10.1111/gcbb.12253.
[33]
HASHIMOTO S. Different accounting approaches to harvested wood products in national greenhouse gas inventories:their incentives to achievement of major policy goals[J]. Environ Sci Policy, 2008, 11(8):756-771.DOI: 10.1016/j.envsci.2008.08.002.
[34]
TER-MIKAELIAN M T, COLOMBO S J, LOVEKIN D, et al. Carbon debt repayment or carbon sequestration parity? Lessons from a forest bioenergy case study in Ontario, Canada[J]. Global Change Biology Bioenergy, 2015, 7(4):704-716. DOI: 10.1111/gcbb.12198.
[35]
陶韵, 杨红强. “伞形集团” 典型国家LULUCF林业碳评估模型比较研究[J]. 南京林业大学学报(自然科学版), 2020, 44(3):202-210.
TAO Y, YANG H Q. Comparative study on carbon assessment models in land use,land use change and forestry of typical “Umbrella Group” countries[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(3):202-210.DOI: 10.3969/j.issn.1000-2006.201905039.
[36]
SMYTH C E, SMILEY B P, MAGNAN M, et al. Climate change mitigation in Canada’s forest sector:a spatially explicit case study for two regions[J]. Carbon Balanc Manag, 2018, 13(1):1-12.DOI: 10.1186/s13021-018-0099-z.
[37]
BRAUN M, FRITZ D, WEISS P, et al. A holistic assessment of greenhouse gas dynamics from forests to the effects of wood pro-ducts use in Austria[J]. Carbon Manag, 2016, 7(5/6):271-283.DOI: 10.1080/17583004.2016.1230990.
[38]
WERNER F, TAVERNA R, HOFER P, et al. National and global greenhouse gas dynamics of different forest management and wood use scenarios:a model-based assessment[J]. Environ Sci Policy, 2010, 13(1):72-85.DOI: 10.1016/j.envsci.2009.10.004.
[39]
SOIMAKALLIO S, SAIKKU L, VALSTA L, et al. Climate change mitigation challenge for wood utilization-the case of Finland[J]. Environ Sci Technol, 2016, 50(10):5127-5134.DOI: 10.1021/acs.est.6b00122.
[40]
DONLAN J, SKOG K, BYRNE K A. Carbon storage in harvested wood products for Ireland 1961-2009[J]. Biomass Bioenergy, 2012, 46:731-738.DOI: 10.1016/j.biombioe.2012.06.018.
[41]
GENG A X, ZHANG H, YANG H Q. Greenhouse gas reduction and cost efficiency of using wood flooring as an alternative to ceramic tile:a case study in China[J]. J Clean Prod, 2017, 166:438-448.DOI: 10.1016/j.jclepro.2017.08.058.
[42]
ALICE-GUIER F E, MOHREN F, ZUIDEMA P A. The life cycle carbon balance of selective logging in tropical forests of Costa Rica[J]. J Ind Ecol, 2020, 24(3):534-547.DOI: 10.1111/jiec.12958.
[43]
GENG A X, NING Z, ZHANG H, et al. Quantifying the climate change mitigation potential of China’s furniture sector:wood substitution benefits on emission reduction[J]. Ecol Indic, 2019, 103:363-372.DOI: 10.1016/j.ecolind.2019.04.036.
[44]
GENG A, CHEN J, YANG H. Assessing the greenhouse gas mitigation potential of harvested wood products substitution in China[J]. Environ Sci Technol, 2019, 53(3):1732-1740.DOI: 10.1021/acs.est.8b06510.
[45]
TONOSAKI M. Harvested wood products accounting in the post Kyoto commitment period[J]. J Wood Sci, 2009, 55(6):390-394.DOI: 10.1007/s10086-009-1052-2.
[46]
JASINEVIČIUS G, LINDNER M, PINGOUD K, et al. Review of models for carbon accounting in harvested wood products[J]. Int Wood Prod J, 2015, 6(4):198-212.DOI: 10.1080/20426445.2015.1104078.
[47]
NABUURS G J, SIKKEMA R. International trade in wood products:its role in the land use change and forestry carbon cycle[J]. Clim Chang, 2001, 49(4):377-395.DOI: 10.1023/A:1010732726540.
[48]
杨红强, 王珊珊. IPCC框架下木质林产品碳储核算研究进展:方法选择及关联利益[J]. 中国人口·资源与环境, 2017, 27(2):44-51.
YANG H Q, WANG S S. Reviews of carbon accounting for HWP based on IPCC framework:approach selections and the relevant interests[J]. China Popul Resour Environ, 2017, 27(2):44-51.DOI: 10.3969/j.issn.1002-2104.2017.02.008.
[49]
SATO A, NOJIRI Y. Assessing the contribution of harvested wood products under greenhouse gas estimation:accounting under the Paris Agreement and the potential for double-counting among the choice of approaches[J]. Carbon Balanc Manag, 2019, 14(1):1-19.DOI: 10.1186/s13021-019-0129-5.
[50]
STOCKMANN K D, ANDERSON N M, SKOG K E, et al. Estimates of carbon stored in harvested wood products from the United States forest service northern region,1906-2010[J]. Carbon Balanc Manag, 2012, 7(1):1.DOI: 10.1186/1750-0680-7-1.
[51]
白彦锋, 姜春前, 张守攻. 中国木质林产品碳储量及其减排潜力[J]. 生态学报, 2009, 29(1):399-405.
BAI Y F, JIANG C Q, ZHANG S G. Carbon stock and potential of emission reduction of harvested wood products in China[J]. Acta Ecol Sin, 2009, 29(1):399-405.DOI: 10.3321/j.issn:1000-0933.2009.01.048.
[52]
LEE J Y, LIN C M, HAN Y H. Carbon sequestration in Taiwan harvested wood products[J]. International Journal of Sustainable Development and World Ecology, 2011, 18(2):154-163. DOI: 10.1080/13504509.2011.553353.
[53]
SEDJO R A. Wood materials used as a means to reduce greenhouse gases (GHGs):an examination of wooden utility poles[J]. Mitig Adapt Strateg Glob Chang, 2002, 7(2):191-200.DOI: 10.1023/A:1022833227481.
[54]
WERNER F, TAVERNA R, HOFER P, et al. Carbon pool and substitution effects of an increased use of wood in buildings in Switzerland:first estimates[J]. Ann For Sci, 2005, 62(8):889-902.DOI: 10.1051/forest:2005080.
[55]
KALT G. Carbon dynamics and GHG implications of increasing wood construction:long-term scenarios for residential buildings in Austria[J]. Carbon Manag, 2018, 9(3):265-275.DOI: 10.1080/17583004.2018.1469948.
[56]
CANNELL M G R. Carbon sequestration and biomass energy offset:theoretical,potential and achievable capacities globally,in Europe and the UK[J]. Biomass Bioenergy, 2003, 24(2):97-116.DOI: 10.1016/S0961-9534(02)00103-4.
[57]
HOLTSMARK B. A comparison of the global warming effects of wood fuels and fossil fuels taking albedo into account[J]. Global Change Biology Bioenergy, 2015, 7(5):984-997. DOI: 10.1111/gcbb.12200.
[58]
LAGANIÈRE J, PARÉ D, THIFFAULT E, et al. Range and uncertainties in estimating delays in greenhouse gas mitigation potential of forest bioenergy sourced from Canadian forests[J]. Global Change Biology Bioenergy, 2017, 9(2):358-369. DOI: 10.1111/gcbb.12327.
[59]
PINGOUD K, WAGNER F. Methane emissions from landfills and carbon dynamics of harvested wood products:the first-order decay revisited[J]. Mitig Adapt Strateg Glob Chang, 2006, 11(5/6):961-978.DOI: 10.1007/s11027-006-9029-6.
[60]
CLÁUDIA DIAS A, LOURO M, ARROJA L, et al. Comparison of methods for estimating carbon in harvested wood products[J]. Biomass Bioenergy, 2009, 33(2):213-222.DOI: 10.1016/j.biombioe.2008.07.004.
[61]
SKOG K E, PINGOUD K, SMITH J E. A method countries can use to estimate changes in carbon stored in harvested wood products and the uncertainty of such estimates[J]. Environ Manag, 2004, 33(1):S65-S73.DOI: 10.1007/s00267-003-9118-1.
[62]
DIAS A C, ARROJA L. A model for estimating carbon accumulation in cork products[J]. Forest Syst, 2014, 23(2):236.DOI: 10.5424/fs/2014232-04100.
[63]
耿爱欣, 杨红强. 生物质能源替代化石能源的成本有效性拓展模型:基于时间价值视角[J]. 资源开发与市场, 2017, 33(5):533-539.
GENG A X, YANG H Q. Construction of cost-effectiveness model of greenhouse gas mitigation by replacing fossil fuels with bioenergy: from the perspective of time-value[J]. Resour Dev Mark, 2017, 33(5):533-539.DOI: 10.3969/j.issn.1005-8141.2017.05.005.
[64]
李忠平. 森林资源连续清查体系优化问题的思考[J]. 林业建设, 2014(6):1-3.
LI Z P. Consideration on problem & optimization for continuous inventory system of forest resource[J]. For Constr, 2014(6):1-3.

RIGHTS & PERMISSIONS

Copyright reserved © 2021
PDF(2087 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/