
A study on the morphology and anatomical structure of Bambusa rutila spiklets
YANG Nan, CUI Yunji, WANG Qian, WANG Shuguang
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (4) : 90-96.
A study on the morphology and anatomical structure of Bambusa rutila spiklets
【Objective】Bamboo plants seldom bloom. The floral organs of Bambusa rutila were used as samples to observe and describe their morphology and anatomical characteristics, and to further supply the study of bamboo plant taxonomy and reproductive biology with new theoretical information.【Method】Spikelets and florets of Bambusa rutila at different developmental stages were chosen as samples, and the methods of morphological observation combined with paraffin sectioning were employed. This was done to observe the anatomical structure of the spikelets and to study the dynamic changes in the morphological characteristics of the floral organs at different developmental stages.【Result】The seed setting percentage of the spikelets of B. rutila was extremely low. The mean length of mature spikelets was approximately 4.756 cm, with a width of 4.0-5.0 mm. The spikelets were usually produced on the top or lateral nodes of the floral branches and each spikelet contained approximately 5-12 florets. The florets at the base of the spikelets flowered first and then they continually bloomed from the bottom to the top. The florets at the top were usually abortive and there was a latent bud at the base of the spikelets that was covered by bracts. Based on the anatomical observations, an intact floret of B. rutila usually contained one lemma, one palea, six stamens, three ciliate lodicules, and one pistil. The bracts and lemma tips of mature spikelets were usually a purplish-red hue. The florets of B. rutila were of the opening type and belonged to a combination of dichogamy and herkogamy types. The anthers would hang out of the spikelets because of the filament elongation when florets were in bloom. The length of mature anthers was approximately 6.0-6.5 mm and they underwent cross-pollination. The lodicules were generally oval in shape and semitransparent with a hairy margin and a purplish red color, all of which were similar in size. The ovaries had ridges on their surface, with a length of 2.5-3.0 mm and villi on the top. The pistils had a short stylus but a long feathery stigma with three branches, which were also purplish red in color. The sporogenous cells in anthers developed synchronously, but meiosis with both dyad and tetrad spores in an anther chamber did not occur consistently. During meiosis, the cell arrangement of the tetrad was symmetrical and the cell division was continuous. The anther walls consisted of the epidermis, endothecium, middle layer, and tapetum at the secondary stage of sporogenous cells, all of which were composed of only one layer of cells with dense cytoplasm and apparent nuclei. Notably, some tapetum cells contained two nuclei. All sporogenous cells were arranged closely with dense cytoplasm, large nuclei, and prominent nucleoli. As they entered into the microsporocyte stage, the middle layer of the anther walls disappeared and the anther chamber space expanded. After the maturation of the anthers, only the epidermis and fiber layer were left in the anther walls. The tapetum and middle layer cells degraded completely, and significant fibrosis occurred in the endothecium cells that formed the fibrous layer. The mature pollen cells were 2-celled. There were two types of abortions in stamens, viz., one occurring after the anther walls developed abnormally and the other after pollen grains developed abnormally. The ovary of B. rutila developed normally with one locule, a double perianth, an inverted ovule, and a lateral membrane placenta. The embryo sac also developed normally.【Conclusion】The spikelets of B. rutila are a type of mixed inflorescence. Abortive pollens were easily observed in mature anthers of B. rutila and most ovaries were unfertilized even though they developed normally. This might be the main reason for the low seed setting percentage of B. rutila.
Bambusa rutila / anther / ovary / abortion / anatomy
[1] |
易同培, 史军义, 马丽莎. 中国竹类图志[M]. 北京: 科学出版社, 2008.
|
[2] |
李睿, 章笕, 章珠娥. 中国竹类植物生物多样性的价值及保护进展[J]. 竹子研究汇刊, 2003, 22(4):7-12,17.
|
[3] |
李洁. 孝顺竹的生殖生物学研究[D]. 南京:南京林业大学, 2013.
|
[4] |
林树燕, 石文文, 缪彬彬, 等. 竹类植物生殖生物学研究进展[J]. 世界竹藤通讯, 2010, 8(2):1-6.
|
[5] |
侯丹. 毛竹生殖器官发育相关miRNA挖掘与miR159-GAMYB途径对花药发育调控研究[D]. 北京:中国林业科学研究院, 2018.
|
[6] |
彭晟, 杨汉奇, 李德铢. 竹亚科箭竹属两种植物花序的补充描述[J]. 云南植物研究, 2006, 28(3):257-258.
|
[7] |
乔士义, 廖光庐. 毛竹的胚胎发育观察[J]. 竹类研究, 1984, 3(1):15-22.
|
[8] |
庞延军, 喻富根, 胡成华, 等. 爬竹雄蕊发育异常的初步观察[J]. 竹子研究汇刊, 1994, 13(4):42-46.
|
[9] |
黄坚钦, 黄华宏, 何福基, 等. 雷竹的小孢子发生和雄配子体形成[J]. 竹子研究汇刊, 1999:55-58.
|
[10] |
王曙光, 普晓兰, 丁雨龙. 巨龙竹生殖器官形态结构及雌、雄配子体的发育[J]. 植物研究, 2006, 26(3):270-274.
|
[11] |
林树燕, 郝娟娟, 辛华, 等. 月月竹大、小孢子发生和雌、雄配子体发育研究[J]. 南京林业大学学报(自然科学版), 2009, 33(3):9-12.
|
[12] |
林树燕, 丁雨龙. 鹅毛竹大小孢子及雌雄配子体发育[J]. 西北植物学报, 2012, 32(5):907-914.
|
[13] |
林树燕. 鹅毛竹和异叶苦竹的生殖生物学研究[D]. 南京:南京林业大学, 2009.
|
[14] |
林树燕, 李洁, 赵荣, 等. 孝顺竹花芽分化及小孢子发生与雄配子体发育[J]. 南京林业大学学报(自然科学版), 2015, 39(4):51-56.
|
[15] |
唐国建, 杨金梅, 丁雨龙, 等. 青丝黄竹花形态与结构研究[J]. 南京林业大学学报(自然科学版), 2016, 40(2):71-75.
|
[16] |
王雨珺, 罗剑, 陈楠楠, 等. 绵竹花形态结构及雌、雄配子体的发育研究[J]. 植物研究, 2017, 37(4):492-498.
|
[17] |
杜凡, 薛嘉榕, 杨宇明, 等. 15年来云南竹子的开花现象及其类型研究[J]. 林业科学, 2000, 36(6):57-68.
|
[18] |
王正平, 叶光汉, 杨雅玲, 等. 中国植物志:第九卷, 第一分册[M]. 北京: 科学出版社, 1996.
|
[19] |
耿伯介. 试论竹类的花序及其演变[J]. 武汉植物学研究, 1986, 4(4):323-336.
|
[20] |
林树燕, 万雅雯, 傅华君, 等. 竹类植物花序建成及花序类型修正[J]. 南京林业大学学报(自然科学版), 2018, 42(6):1-6.
|
[21] |
|
[22] |
林树燕, 李洁, 赵荣, 等. 南京地区孝顺竹的开花生物学特性研究[J]. 南京林业大学学报(自然科学版), 2015, 39(2):52-56.
|
[23] |
李娟, 王一方, 初彩华, 等. 硬头黄竹花的形态与结构研究[J]. 林业科学研究, 2020, 33(1):28-34.
|
[24] |
钟远标, 岳晋军, 楼崇, 等. 麻竹的花器官与繁育系统[J]. 林业科学, 2017, 53(1):1-10.
|
[25] |
初彩华, 黄玲, 王曙光. 新小竹花形态结构及雌、雄配子体的发育研究[J]. 西北植物学报, 2019, 39(5):763-769.
|
[26] |
林树燕, 傅华君, 万雅雯, 等. ‘霞早’绿竹花形态特征及花药发育的组织学观察. 南京林业大学学报 (自然科学版), 2019, 43(2):7-13.
|
/
〈 |
|
〉 |