Modeling the degree of coupling relationship between plant community diversity and soil properties on typical urban roads in Nanjing

XU Jingyuan, SHENG Qianqian, WANG Weixi, LIU Congzhe, ZHU Zunling

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (6) : 119-126.

PDF(3594 KB)
PDF(3594 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (6) : 119-126. DOI: 10.12302/j.issn.1000-2006.202006063

Modeling the degree of coupling relationship between plant community diversity and soil properties on typical urban roads in Nanjing

Author information +
History +

Abstract

【Objective】 The plant-soil system has a complex mechanism of action. We aimed to reveal the limiting factors for the positive succession of plant communities on urban roads as well as screen for the best plant community types. We expect the results of this study to provide a theoretical guidance for soil management and protection, and provide data supports for redesigning urban road green landscapes. 【Method】 Three urban roads (Jiangbei Avenue, Honesty Avenue and Xianlin Avenue) that ranked high in the air pollution level in Nanjing, China, were regarded as research objects. Typical plant communities were selected for field surveys and the soil sampling analysis. According to the lifestyle of the plant, the community was divided into the following categories: single-layer, double-layer, three-layer and four-layer communities. The degree of coupling and interaction between plant community diversity and soil properties were measured using the gray correlation model. 【Result】 With the increase in community hierarchy, the level of species diversity showed an upward trend. The four-layer community had the highest soil water content, and the contents of soil organic matter, soil total nitrogen and soil available potassium showed an increasing trend with an increase in the community level. Soil properties were more likely to affect the uniformity of plant distributions than plant species, which experienced a minimal impact. Soil total potassium, soil bulk density, soil organic matter, soil total nitrogen, soil total phosphorus and soil pH were the main limiting factors for the vegetation growth. The correlation with plant factors was greater than 0.90 (a strong correlation). With the increase in community hierarchy, the degree of coupling of the plant-soil system increased. 【Conclusion】 Plant communities with high structural levels have a strong ecosystem stability. Considering environmental conditions and transportation needs, the recommendation for urban road greening is a four-layer community with a rich community structure.

Key words

urban road / community type / soil property / coupling relationship / Nanjing City

Cite this article

Download Citations
XU Jingyuan , SHENG Qianqian , WANG Weixi , et al . Modeling the degree of coupling relationship between plant community diversity and soil properties on typical urban roads in Nanjing[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(6): 119-126 https://doi.org/10.12302/j.issn.1000-2006.202006063

References

[1]
欧阳子珞, 吉文丽, 杨梅. 西安城市绿地植物多样性分析[J]. 西北林学院学报, 2015, 30(2):257-,292261.
OUYANG Z L, JI W L, YANG M. Plant diversity of urban green spaces in Xi’an[J]. J Northwest For Univ, 2015, 30(2):257-261,292.
[2]
SU T X, WANG H, GU K, et al. Greenway theory and integrated planning of urban green space system: a case study of Yancheng City in Jiangsu Province[C]// Modern Landscape Architecture, 2015.[2020-05-31].http:/www.wseas.us/e-library/conferences/2013/Nanjing/LA/LA-33.pdf.
[3]
银花, 王大明. 高速公路自身景观的评价方法[J]. 南京林业大学学报(自然科学版), 2006, 30(S1):63-66.
YIN H, WANG D M. Measures of highway’s own landscape evaluation[J]. J Nanjing Fore Univ (Nat Sci Ed), 2006, 30(S1):63-66.DOI: 10.3969/j.jssn.1000-2006.2006.07.019.
[4]
CHIBUIKE G U, OBIORA S C. Heavy metal polluted soils: effect on plants and bioremediation methods[J]. Appl Environ Soil Sci, 2014, 2014:1-12.DOI: 10.1155/2014/752708.
[5]
FANG X M, ZHANG X L, CHEN F S, et al. Phosphorus addition alters the response of soil organic carbon decomposition to nitrogen deposition in a subtropical forest[J]. Soil Biol Biochem, 2019, 133:119-128.DOI: 10.1016/j.soilbio.2019.03.005.
[6]
UDDIN M N, ROBINSON R W. Responses of plant species diversity and soil physical-chemical-microbial properties to Phragmites australis invasion along a density gradient[J]. Sci Rep, 2017, 7:11007.DOI: 10.1038/s41598-017-11205-0.
[7]
盛茂银, 熊康宁, 崔高仰, 等. 贵州喀斯特石漠化地区植物多样性与土壤理化性质[J]. 生态学报, 2015, 35(2):434-448.
SHENG M Y, XIONG K N, CUI G Y, et al. Plant diversity and soil physical-chemical properties in Karst rocky desertification ecosystem of Guizhou,China[J]. Acta Ecol Sin, 2015, 35(2):434-448.DOI: 10.5846/stxb201303220488.
[8]
庄家尧, 张波, 苏继申, 等. 城市土壤重金属污染与植物修复技术研究进展[J]. 林业科技开发, 2009, 23(4):6-12.
ZHUANG J Y, ZHANG B, SU J S, et al. Advances on heavy metal pollution in city soils and phytoremediation[J]. For Sci Tech Develo, 2009, 23(4):6-12. DOI: 10.3969/j.issn.1000-8101.2009.04.002.
[9]
WEI J J, CHUN Y H, FEI X Y, et al. Spatial and temporal patterns of soil fertility quality and analysis of related factors in urban-rural transition zone of Beijing[J]. Afr J Biotechnol, 2011, 10(53):10948-10956.DOI: 10.5897/ajb11.275.
[10]
FUKAMI T, NAKAJIMA M. Complex plant-soil interactions enhance plant species diversity by delaying community convergence[J]. J Ecol, 2013, 101(2):316-324.DOI: 10.1111/1365-2745.12048.
[11]
XIAO R, ALI A, WANG P, et al. Comparison of the feasibility of different washing solutions for combined soil washing and phytoremediation for the detoxification of cadmium (Cd) and zinc (Zn) in contaminated soil[J]. Chemosphere, 2019, 230:510-518.DOI: 10.1016/j.chemosphere.2019.05.121.
[12]
张艳, 赵廷宁, 史常青, 等. 坡面植被恢复过程中植被与土壤特征评价[J]. 农业工程学报, 2013, 29(3):124-131.
ZHANG Y, ZHAO T N, SHI C Q, et al. Evaluation of vegetation and soil characteristics during slope vegetation recovery procedure[J]. Trans Chin Soc Agric Eng, 2013, 29(3):124-131.
[13]
GUAN J, CHEN X F. A coordination research on urban ecosystem in Beijing with weighted grey correlation analysis based on DEA[J]. J Appl Sci, 2013, 13(24):5749-5752.DOI: 10.3923/jas.2013.5749.5752.
[14]
徐明, 张健, 刘国彬, 等. 不同植被恢复模式沟谷地植被-土壤系统耦合关系评价[J]. 自然资源学报, 2016, 31(12):2137-2146.
XU M, ZHANG J, LIU G B, et al. Analysis on vegetation-soil coupling relationship in gullies with different vegetation restoration patterns[J]. J Nat Resour, 2016, 31(12):2137-2146.DOI: 10.11849/zrzyxb.20150736.
[15]
南京市统计局, 国家统计局南京调查队. 南京统计年鉴[M]. 北京: 中国统计出版社, 2019.
Nanjing Municipal Bureau of Statistics, Nnational Bureau of Statistics Nanjing Investigation Team. Nanjing statistical yearbook[M]. Beijing: China Statistics Press, 2019.
[16]
庞少东. 基于GIS的城市林业土壤重金属含量空间分布:以南京市为例[D]. 南京:南京林业大学, 2016.
PANG S D. Spatial distribution of heavy metals in urban forestry soil based on GIS :a case study of Nanjing City[D]. Nanjing:Nanjing Forestry University, 2016.
[17]
周昱妍. 江宁东山副城停车换乘规划设计研究[D]. 南京:南京工业大学, 2013.
ZHOU Y Y. Study on parking & ride planning of Dongshan sub-city in Jiangning[D]. Nanjing:Nanjing University of Technology, 2013.
[18]
巢耀明. 南京新城区居住就业空间及协调发展机制研究[D]. 南京:东南大学, 2015.
CHAO Y M. Research on residential-employment space and coordinated development mechanism of new town in Nanjing[D]. Nanjing:Southeast University, 2015.
[19]
徐晶园, 宋敏, 唐燕, 等. 基于GIS的南京城市道路绿化景观分析及优化[J]. 北方园艺, 2020(10):87-94.
XU J Y, SONG M, TANG Y, et al. Analysis and optimization of greening landscape of Nanjing urban road based on GIS[J]. North Hortic, 2020(10):87-94.
[20]
VCHO D C, SHIN D B. Development of general purpose model for park and green space management system in South Korea[J]. Spatial Inf Res, 2017, 25(4):593-604.DOI: 10.1007/s41324-017-0121-7.
[21]
潘婷婷, 陈林, 杨国栋, 等. 南京北部郊野森林群落物种多样性及其环境解释[J]. 南京林业大学学报(自然科学版), 2020, 44(6):48-54.
PAN T T, CHEN L, YANG G D, et al. Species diversity of communities and environmental interpretation of the suburban forest in northern Nanjing[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(6):48-54.DOI: 10.3969/j.issn.1000-2006.202001029.
[22]
郭琳. 邯郸市邯钢工业区及周边城市道路植物群落配置分析研究[D]. 邯郸:河北工程大学, 2019.
GUO L. Analysis of plant community allocation of roads in Handan iron and steel industrial zone and its surrounding cities[D]. Handan:Hebei University of Engineering, 2019.
[23]
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业出版社, 1999.
LU R K. Soil argrochemistry analysis protocols [M]. Beijing: China Agriculture Science Press, 1999.
[24]
FUKAHORI K, KUBOTA Y. The role of design elements on the cost-effectiveness of streetscape improvement[J]. Landsc Urban Plan, 2003, 63(2):75-91.DOI: 10.1016/S0169-2046(02)00180-9.
[25]
SONG H W, LU S M. Study on repairing permanent transportation roadway in deep mining by bolt-shotcrete and mesh supporting[J]. J China Univ Min Technol, 1999, 9(2):167-171.
[26]
LEHMAN C L, TILMAN D. Biodiversity,stability,and productivity in competitive communities[J]. Am Nat, 2000, 156(5):534-552.DOI: 10.1086/303402.
[27]
VUORIO V, MUCHIRU A, REID R S, et al. How pastoralism changes savanna vegetation:impact of old pastoral settlements on plant diversity and abundance in south-western Kenya[J]. Biodivers Conserv, 2014, 23(13):3219-3240.DOI: 10.1007/s10531-014-0777-4.
[28]
康冰, 刘世荣, 蔡道雄, 等. 南亚热带不同植被恢复模式下土壤理化性质[J]. 应用生态学报, 2010, 21(10):2479-2486.
KANG B, LIU S R, CAI D X, et al. Soil physical and chemical characteristics under different vegetation restoration patterns in China south subtropical area[J]. Chin J Appl Ecol, 2010, 21(10):2479-2486.DOI: 10.13287/j.1001-9332.2010.0386.
[29]
汪东亚. 亚热带森林不同景观位置土壤理化性质的变化特征与森林的可持续发展[D]. 武汉:中国科学院武汉植物园, 2017.
WANG D Y. Soil physical and chemical characteristics among different landscape positions and their significance on forest sustainable development in the subtropical forest region[D]. Wuhan:Wuhan Botanical Garden, CAS, 2017.
[30]
杨亚辉. 黄土丘陵沟壑区植被恢复对土壤理化性质影响分析[D]. 北京:中国科学院大学, 2017.
YANG Y H. Impacts of vegetation restoration on soil physical and chemical properties in the loess hilly gully region of Loess Plateau[D]. Beijing:University of Chinese Academy of Sciences, 2017.
[31]
党鹏. 黄土高原油松人工林物种多样性和土壤理化性质的研究[D]. 杨凌:西北农林科技大学, 2014.
DANG P. Research on species diversity and soil physical and chemical properties under Pinus tabuliformis plantation on Loess Plateau[D]. Yangling:Northwest A & F University, 2014.
[32]
马杰, 李兰海, 刘翔, 等. 伊犁河上游典型草地生态系统氮磷含量及化学计量特征[J]. 南京林业大学学报(自然科学版), 2017, 41(3):7-14.
MA J, LI L H, LIU X, et al. Stoichiometry of nitrogen and phosphorus and the content in grassland ecosystem in the upper reaches of Ili River[J]. J Nanjing For Univ (Nat Sci Ed), 2017, 41(3):7-14.DOI: 10.3969/j.issn.1000-2006.201702013.
[33]
刘宝贤. 日照海岸不同沙生植物群落特征及其土壤特性变化研究[D]. 泰安:山东农业大学, 2014.
LIU B X. Studies on the characteristic of different sand-plant community and the changes of soil properties in the coast of Rizhao[D]. Tai’an:Shandong Agricultural University, 2014.
[34]
余敏, 周志勇, 康峰峰, 等. 山西灵空山小蛇沟林下草本层植物群落梯度分析及环境解释[J]. 植物生态学报, 2013, 37(5):373-383.
Abstract
通过对山西灵空山小蛇沟集水区的林下草本层植物群落进行调查和多元分析——TWINSPAN分类、典范对应分析(CCA)与生境、生物因素变量分离, 探讨林分水平上草本层物种分布与环境因子之间的关系。结果如下: 1) TWINSPAN将26个调查样方划分为6种群落类型: 以辽东栎(Quercus wutaishanica)为主的辽东栎-油松(Pinus tabulaeformis)林型、辽东栎杂木林型、辽东栎林型、华北落叶松(Larix principis-rupprechtii)林型、油松林和阔叶油松林型、油松-辽东栎均匀混交林型, 体现了该地区地带性植被类型为暖温带森林的特点。2)群落类型的划分与CCA的结果相吻合, 主要反映了CCA排序第一、二轴的环境梯度, CCA排序轴第一轴突出反映了林分类型与土壤养分梯度, 第二排序轴与坡度、坡位显著相关。Monte Carlo检验结果表明, 林分类型、土壤养分和坡度是影响小蛇沟集水区内林下草本物种分异的最主要的环境因子。3)生境因子与生物因子解释了物种格局变化的42.9%, 其中生境因子占31.8%, 生物因子占7.9%, 生境因子与生物因子交互作用解释部分占3.2%。良好的环境解释反映了调查取样和环境因子选取的合理性。对于50%以上未能被解释的变异部分, 可能归咎于未被选取的因子如干扰或者随机过程。4)在海拔梯度较小的山区, 坡向等小地形因子能较好地指示局部生境的小气候条件, 对林下植物的分布有较好的解释力。
YU M, ZHOU Z Y, KANG F F, et al. Gradient analysis and environmental interpretation of understory herb-layer communities in Xiaoshegou of Lingkong Mountain,Shanxi,China[J]. Chin J Plant Ecol, 2013, 37(5):373-383.DOI: 10.3724/SP.J.1258.2013.00039.

RIGHTS & PERMISSIONS

Copyright reserved © 2021.
PDF(3594 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/