Prediction of potential geographical distribution pattern change for Castanopsis sclerophylla on MaxEnt

MIAO Jing, WANG Yong, WANG Lu, XU Xiaogang

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (3) : 193-198.

PDF(3000 KB)
PDF(3000 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (3) : 193-198. DOI: 10.12302/j.issn.1000-2006.202008029

Prediction of potential geographical distribution pattern change for Castanopsis sclerophylla on MaxEnt

Author information +
History +

Abstract

【Objective】 Castanopsis sclerophylla is an evergreen broad-leaved tree species of the Fagaceae family. It is widely distributed in the provinces and regions south of the Yangtze River and north of the five mountains in China. It is regarded as the “Dividing tree” of the climate in the south and north of China. It is important to study the changes in the potential geographical distribution of Castanopsis and its response to climate change for the protection and utilization of its wild resources. 【Method】 In this study, the MaxEnt model was used to simulate and predict the potential distribution areas of Castanopsis during the last glacial maximum, in modern times, and in 2070, and to evaluate the impacts of different climatic factors on its potential geographical distribution. 【Result】 ① The accuracy of the MaxEnt model in simulating the modern distribution area is very high, and the area under the working characteristic curve (AUC value) of the subjects was 0.971. ② The modern day highly suitable area for Castanopsis is mainly the mountainous area of south Anhui, namely the Dabie Mountainous areas, Tianmu Mountain and the hinterland of north Yandang Mountain. The moderately suitable area is located in the mountainous area of southern Jiangsu, namely the coastal area of Jiangxi and Fujian. The distribution during the last glacial maximum was mainly in the south and north of China and east of the continental shelf of the East Sea. It was predicted that in 2070, the distribution of Castanopsis will be affected by climate and the habitat will be fragmented. The highly and moderately suitable areas were predicted to remain in the high-altitude areas. ③ The Jackknife test showed that rainfall and average temperature in the driest season are the most important climatic factors affecting the geographical distribution of Castanopsis sclerophylla. 【Conclusion】 The effects of different climatic factors on the potential geographical distribution of Castanopsis sclerophylla can provide a scientific basis and guidance for provenance protection, habitat restoration, breeding, and domestication of Castanopsis.

Key words

Castanopsis sclerophylla / potential distribution area / MaxEnt model / climate change / phytogeography

Cite this article

Download Citations
MIAO Jing , WANG Yong , WANG Lu , et al. Prediction of potential geographical distribution pattern change for Castanopsis sclerophylla on MaxEnt[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(3): 193-198 https://doi.org/10.12302/j.issn.1000-2006.202008029

References

[1]
PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions[J]. Ecol Model, 2006,190(3/4):231-259.DOI: 10.1016/j.ecolmodel.2005.03.026.
[2]
PHILLIPS S J, DUDÍK M. Modeling of species distributions with MaxEnt:new extensions and a comprehensive evaluation[J]. Ecography, 2008,31(2):161-175.DOI: 10.1111/j.0906-7590.2008.5203.x.
[3]
ELITH J, KEARNEY M, PHILLIPS S. The art of modelling range-shifting species[J]. Methods Ecol Evol, 2010,1(4):330-342.DOI: 10.1111/j.2041-210X.2010.00036.x.
[4]
RADOSAVLJEVIC A, ANDERSON R P. Making better MaxEnt models of species distributions:complexity,overfitting and evaluation[J]. J Biogeogr, 2014,41(4):629-643.DOI: 10.1111/jbi.12227.
[5]
童丽丽, 许晓岗, 关庆伟, 等. 南京牛首山森林公园苦槠群落的结构分析[J]. 东北林业大学学报, 2007,35(3):23-26.
TONG L L, XU X G, GUAN Q W, et al. Community structure analysis of Castanopsis sclerophylla forest in mount Niushou forest park of Nanjing City[J]. J Northeast For Univ, 2007,35(3):23-26.
[6]
李垚, 张兴旺, 方炎明. 气候变暖对中国栓皮栋地理分布格局影响的预测[J]. 应用生态学报, 2014,25(12):3381-3389.
LI Y, ZHANG X W, FANG Y M. Predicting the impact of global warming on the geographical distribution pattern of Quercus varia-bilis in China[J]. Chinese Journal of Applied Ecology, 2014,25(12):3381-3389. DOI: 10.13287/j.1001-9332.20140925.005.
[7]
申家朋, 陈东升, 洪奕丰, 等. 基于MaxEnt模型对日本落叶松在中国潜在分布区的预测[J]. 植物资源与环境学报, 2019,28(3):19-25.
SHEN J P, CHEN D S, HONG Y F, et al. Prediction on potential distribution areas of Larix kaempferi in China based on MaxEnt model[J]. J Plant Resour and Environ, 2019,28(3):19-25.DOI: 10.3969/j.issn.1674-7895.2019.03.03.
[8]
RENNER I W, WARTON D I. Equivalence of MaxEnt and poisson point process models for species distribution modeling in ecology[J]. Biometrics, 2013,69(1):274-281.DOI: 10.1111/j.1541-0420.2012.01824.x.
[9]
吴显坤, 南程慧, 汤庚国, 等. 气候变化对浙江楠潜在分布范围及空间格局的影响[J]. 南京林业大学学报(自然科学版), 2016,40(6):85-91.
WU X K, NAN C H, TANG G G, et al. Impact of climate change on potential distribution range and spatial pattern of Phoebe chekiangensis[J]. J Nanjing For Univ (Nat Sci Ed), 2016,40(6):85-91.DOI: 10.3969/j.issn.1000-2006.2016.06.013.
[10]
王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007,15(4):365-372.
WANG Y S, XIE B Y, WAN F H, et al. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models[J]. Biodivers Sci, 2007,15(4):365-372.DOI: 10.3321/j.issn:1005-0094.2007.04.005.
[11]
FAND B B, KUMAR M, KAMBLE A L. Predicting the potential geographic distribution of cotton mealybug Phenacoccus solenopsis in India based on MaxEnt ecological niche model[J]. J Environ Biol, 2014,35(5):973-982.
[12]
马青江, 孙操稳, 张乐英, 等. 东亚四照花群体中国潜在适生区预测研究[J]. 南京林业大学学报(自然科学版), 2019,43(5):135-140.
MA Q J, SUN C W, ZHANG L Y, et al. Identification of potential distribution region for east Asian dogwoods (Cornus) in China[J]. J Nanjing For Univ (Nat Sci Ed), 2019,43(5):135-140.DOI: 10.3969/j.issn.1000-2006.201901046
[13]
EVANGELISTA P H, KUMAR S, STOHLGREN T J, et al. Modelling invasion for a habitat generalist and a specialist plant species[J]. Divers Distributions, 2008,14(5):808-817.DOI: 10.1111/j.1472-4642.2008.00486.x.
[14]
SHCHEGLOVITOVA M, ANDERSON R P. Estimating optimal complexity for ecological niche models:a Jackknife approach for species with small sample sizes[J]. Ecol Model, 2013,269:9-17.DOI: 10.1016/j.ecolmodel.2013.08.011.
[15]
浦庆余. 末次冰期以来中国自然环境变迁及其与全球变化的关系[J]. 第四纪研究, 1991,11(3):245-259.
PU Q Y. Evolution of natural environment in China since the last glacial period and its position in the global change[J]. Quat Sci, 1991,11(3):245-259.
[16]
刘金陵, 王伟铭. 关于华南地区末次冰盛期植被类型的讨论[J]. 第四纪研究, 2004,24(2):213-216.
LIU J L, WANG W M. A discussion on the vegetation types during lgm time in south China[J]. Quat Sci, 2004,24(2):213-216.DOI: 10.3321/j.issn:1001-7410.2004.02.012.
[17]
解应波, 董洪进, 李新辉, 等. 云南轿子雪山种子植物多样性分布格局[J]. 森林工程, 2020,36(6):1-8.
XIE Y B, DONG H J, LI X H, et al. Distribution pattern of seed plants diversity of Jiaozi Snow Mountain, Yunnan[J]. Forest Engineering, 2020,36(6):1-8.
[18]
郑维艳, 曹坤芳. 中国柯属5种资源植物潜在地理分布及其对气候变化的响应[J]. 植物科学学报, 2019,37(4):474-484.
ZHENG W Y, CAO K F. Potential geographical distribution of five Lithocarpus species in China and their response to climate change[J]. Plant Sci J, 2019,37(4):474-484.DOI: 10.11913/PSJ.2095-0837.2019.40474.
[19]
石苗苗. 中国苦槠边缘区和核心区种群遗传结构的比较[D]. 上海:华东师范大学, 2008.
SHI M M. A comparative study of genetic structure between the central and peripheral populations of Castanopsis sclerophylla[D]. Shanghai:East China Normal University, 2008.
[20]
钱云, 钱永甫, 张耀存. 末次冰期东亚区域气候变化的情景和机制研究[J]. 大气科学, 1998,22(3):28-38.
QIAN Y, QIAN Y F, ZHANG Y C. Study on scenarios and mechanism of the regional climate change of east Asia in the last ice-age[J]. Sci Atmos Sin, 1998,22(3):28-38.
[21]
刘滨, 王嵘, 刘映良, 等. 不同干扰强度生境中啮齿动物对苦槠种子的取食和扩散[J]. 生态学杂志, 2011,30(8),30:1668-1673.
LIU B, WANG R, LIU Y L, et al. Seed dispersal and predation of Castanopsis sclerophylla by small rodents in habitats with different disturbance intensity[J]. Chin J Ecol, 2011,30(8),30:1668-1673.DOI: 10.13292/j.1000-4890.2011.0249.
[22]
李新周, 刘晓东. 未来全球气候变暖情景下华东地区极端降水变化的数值模拟研究[J]. 热带气象学报, 2012,28(3):379-391.
LI X Z, LIU X D. Numerical simulations of extreme precipitation in eastern China under A1B scenario[J]. J Trop Meteorol, 2012,28(3):379-391.DOI: 10.3969/j.issn.1004-4965.2012.03.010.
[23]
金安琪, 张昂, 赵昕奕. 气候变化情景下中国东部地区未来气候舒适度变化预测[J]. 北京大学学报(自然科学版), 2019,55(5):887-898.
JIN A Q, ZHANG A, ZHAO X Y. Estimation of climate comfort in eastern China in the context of climate change[J]. Acta Sci Nat Univ Pekin, 2019,55(5):887-898.DOI: 10.13209/j.0479-8023.2019.057.
[24]
刘茂松, 洪必恭. 中国壳斗科的地理分布及其与气候条件的关系[J]. 植物生态学报, 1998,22(1):41-50.
Abstract
壳斗科是温带、亚热带最重要的森林树种之一,在我国有7属350多种和变种,呈北东东—南西西向分布,几乎遍及全国,在亚热带和温带森林中,常成为重要的建群种。壳斗科在我国总体上是北温带—亚热带分布类型。本文对壳斗科的物种丰富度分布、特有性分布及其与气候地理条件的关系进行了研究,并提出种类特有性的指数(EI,Endemic Index):EI=(N/∑Ki)×10 研究发现,分布的物种丰富度中心在滇、桂、黔一带,而特有性中心则在滇、藏、琼等地。另外,通过逐步回归及比较分析,发现水热状况往往成为限制壳斗科物种丰富度分布格局的主导因子。而海峡等生态、地理隔离因子及空间异质性等对特有性指数的增加有明显的促进作用。影响物种丰富度与特有性指数分布的生态因子往往有较大的差异。
LIU M S, HONG B G. The distribution of Fagaceae in China and its relationship with climatic and geographic characters[J]. Acta Phytoecol Sin, 1998,22(1):41-50.
[25]
章小金, 邓文清. 苦槠高效栽培技术[J]. 现代农业科技, 2009(5):33.
[26]
陈禹衡, 吕一维, 殷晓洁. 气候变化下西南地区12种常见针叶树种适宜分布区预测[J]. 南京林业大学学报(自然科学版), 2019,43(6):113-120.
CHEN Y H, LÜ Y W, YIN X J. Predicting habitat suitability of 12 coniferous forest tree species in southwest China based on climate change[J]. J Nanjing For Univ (Nat Sci Ed), 2019,43(6):113-120.DOI: 10.3969/j.issn.1000-2006.201808045.

RIGHTS & PERMISSIONS

Copyright reserved © 2021
PDF(3000 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/